Detection of Microscale Mass‐Transport Regimes in Supercritical Fluid Extraction
The problem of detecting supercritical fluid extraction regimes on the particle‐scale level is discussed by using a generalized multiparameter model, which includes the shrinking‐core (SC) and broken‐and‐intact‐cells (BIC) approaches as its limiting cases. The model accounts for two internal mass‐tr...
Gespeichert in:
Veröffentlicht in: | Chemical engineering & technology 2017-05, Vol.40 (5), p.829-837 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 837 |
---|---|
container_issue | 5 |
container_start_page | 829 |
container_title | Chemical engineering & technology |
container_volume | 40 |
creator | Salamatin, Arthur A. |
description | The problem of detecting supercritical fluid extraction regimes on the particle‐scale level is discussed by using a generalized multiparameter model, which includes the shrinking‐core (SC) and broken‐and‐intact‐cells (BIC) approaches as its limiting cases. The model accounts for two internal mass‐transfer resistances attributed to cell membranes and transport channels. A wide spectrum of particle‐scale extraction regimes, described by the model, agree with available up‐to‐date relatively short laboratory experiments. Simplified concepts (like SC or BIC) could only be used for available experimental data correlation, and do not allow a reliable extension to long process times. The experimental methodology was suggested to detect limiting internal mass‐transfer mechanisms.
A generalized model of a particle‐scale supercritical‐fluid‐extraction process is introduced. It is demonstrated that up‐to‐date experiments only allow identification of the initial extraction rates, which decrease or remain constant with time, depending on the assumed internal extraction regime. A methodology to detect the extraction regime in the particle is suggested. |
doi_str_mv | 10.1002/ceat.201600599 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1904200459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1904200459</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3879-b4474db08b1360dd13403ee5ed67e1d250a666e04931ed4174504fa694f891a3</originalsourceid><addsrcrecordid>eNqFkM1Kw0AUhQdRsFa3rgfcuEm985NJZ1lqq4JFqNkP0-RGpqRJnEnQ7nwEn9EnMbWi4MbV5cB3DpePkHMGIwbArzK07YgDUwCx1gdkwGLOIsl4fEgGoAVESczUMTkJYQ0ArA8DsrzGFrPW1RWtC7pwma9DZkukCxvCx9t76m0Vmtq3dIlPboOBuoo-dg36zLvW9Sidl53L6ey19fZr6JQcFbYMePZ9hySdz9LpbXT_cHM3ndxHmRgnOlpJmch8BeMVEwrynAkJAjHGXCXIch6DVUohSC0Y5pIlMgZZWKVlMdbMiiG53M82vn7uMLRm40KGZWkrrLtgmAbJAWSse_TiD7quO1_1z_UUB6k4T0RPjfbUzkHwWJjGu431W8PA7AybnWHzY7gv6H3hxZW4_Yc209kk_e1-Arr1f3Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1920462273</pqid></control><display><type>article</type><title>Detection of Microscale Mass‐Transport Regimes in Supercritical Fluid Extraction</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Salamatin, Arthur A.</creator><creatorcontrib>Salamatin, Arthur A.</creatorcontrib><description>The problem of detecting supercritical fluid extraction regimes on the particle‐scale level is discussed by using a generalized multiparameter model, which includes the shrinking‐core (SC) and broken‐and‐intact‐cells (BIC) approaches as its limiting cases. The model accounts for two internal mass‐transfer resistances attributed to cell membranes and transport channels. A wide spectrum of particle‐scale extraction regimes, described by the model, agree with available up‐to‐date relatively short laboratory experiments. Simplified concepts (like SC or BIC) could only be used for available experimental data correlation, and do not allow a reliable extension to long process times. The experimental methodology was suggested to detect limiting internal mass‐transfer mechanisms.
A generalized model of a particle‐scale supercritical‐fluid‐extraction process is introduced. It is demonstrated that up‐to‐date experiments only allow identification of the initial extraction rates, which decrease or remain constant with time, depending on the assumed internal extraction regime. A methodology to detect the extraction regime in the particle is suggested.</description><identifier>ISSN: 0930-7516</identifier><identifier>EISSN: 1521-4125</identifier><identifier>DOI: 10.1002/ceat.201600599</identifier><language>eng</language><publisher>Frankfurt: Wiley Subscription Services, Inc</publisher><subject>Broken‐and‐intact‐cells model ; Cell membrane permeability ; Cell membranes ; Channels ; Chemical engineering ; Constraining ; Data correlation ; Extraction ; Extraction curves ; Mass transfer ; Mass transport ; Mathematical models ; Membranes ; Methodology ; Scale (ratio) ; Shrinking core model ; Supercritical fluids ; Transport</subject><ispartof>Chemical engineering & technology, 2017-05, Vol.40 (5), p.829-837</ispartof><rights>2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3879-b4474db08b1360dd13403ee5ed67e1d250a666e04931ed4174504fa694f891a3</citedby><cites>FETCH-LOGICAL-c3879-b4474db08b1360dd13403ee5ed67e1d250a666e04931ed4174504fa694f891a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fceat.201600599$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fceat.201600599$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Salamatin, Arthur A.</creatorcontrib><title>Detection of Microscale Mass‐Transport Regimes in Supercritical Fluid Extraction</title><title>Chemical engineering & technology</title><description>The problem of detecting supercritical fluid extraction regimes on the particle‐scale level is discussed by using a generalized multiparameter model, which includes the shrinking‐core (SC) and broken‐and‐intact‐cells (BIC) approaches as its limiting cases. The model accounts for two internal mass‐transfer resistances attributed to cell membranes and transport channels. A wide spectrum of particle‐scale extraction regimes, described by the model, agree with available up‐to‐date relatively short laboratory experiments. Simplified concepts (like SC or BIC) could only be used for available experimental data correlation, and do not allow a reliable extension to long process times. The experimental methodology was suggested to detect limiting internal mass‐transfer mechanisms.
A generalized model of a particle‐scale supercritical‐fluid‐extraction process is introduced. It is demonstrated that up‐to‐date experiments only allow identification of the initial extraction rates, which decrease or remain constant with time, depending on the assumed internal extraction regime. A methodology to detect the extraction regime in the particle is suggested.</description><subject>Broken‐and‐intact‐cells model</subject><subject>Cell membrane permeability</subject><subject>Cell membranes</subject><subject>Channels</subject><subject>Chemical engineering</subject><subject>Constraining</subject><subject>Data correlation</subject><subject>Extraction</subject><subject>Extraction curves</subject><subject>Mass transfer</subject><subject>Mass transport</subject><subject>Mathematical models</subject><subject>Membranes</subject><subject>Methodology</subject><subject>Scale (ratio)</subject><subject>Shrinking core model</subject><subject>Supercritical fluids</subject><subject>Transport</subject><issn>0930-7516</issn><issn>1521-4125</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkM1Kw0AUhQdRsFa3rgfcuEm985NJZ1lqq4JFqNkP0-RGpqRJnEnQ7nwEn9EnMbWi4MbV5cB3DpePkHMGIwbArzK07YgDUwCx1gdkwGLOIsl4fEgGoAVESczUMTkJYQ0ArA8DsrzGFrPW1RWtC7pwma9DZkukCxvCx9t76m0Vmtq3dIlPboOBuoo-dg36zLvW9Sidl53L6ey19fZr6JQcFbYMePZ9hySdz9LpbXT_cHM3ndxHmRgnOlpJmch8BeMVEwrynAkJAjHGXCXIch6DVUohSC0Y5pIlMgZZWKVlMdbMiiG53M82vn7uMLRm40KGZWkrrLtgmAbJAWSse_TiD7quO1_1z_UUB6k4T0RPjfbUzkHwWJjGu431W8PA7AybnWHzY7gv6H3hxZW4_Yc209kk_e1-Arr1f3Y</recordid><startdate>201705</startdate><enddate>201705</enddate><creator>Salamatin, Arthur A.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>201705</creationdate><title>Detection of Microscale Mass‐Transport Regimes in Supercritical Fluid Extraction</title><author>Salamatin, Arthur A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3879-b4474db08b1360dd13403ee5ed67e1d250a666e04931ed4174504fa694f891a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Broken‐and‐intact‐cells model</topic><topic>Cell membrane permeability</topic><topic>Cell membranes</topic><topic>Channels</topic><topic>Chemical engineering</topic><topic>Constraining</topic><topic>Data correlation</topic><topic>Extraction</topic><topic>Extraction curves</topic><topic>Mass transfer</topic><topic>Mass transport</topic><topic>Mathematical models</topic><topic>Membranes</topic><topic>Methodology</topic><topic>Scale (ratio)</topic><topic>Shrinking core model</topic><topic>Supercritical fluids</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salamatin, Arthur A.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chemical engineering & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salamatin, Arthur A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of Microscale Mass‐Transport Regimes in Supercritical Fluid Extraction</atitle><jtitle>Chemical engineering & technology</jtitle><date>2017-05</date><risdate>2017</risdate><volume>40</volume><issue>5</issue><spage>829</spage><epage>837</epage><pages>829-837</pages><issn>0930-7516</issn><eissn>1521-4125</eissn><abstract>The problem of detecting supercritical fluid extraction regimes on the particle‐scale level is discussed by using a generalized multiparameter model, which includes the shrinking‐core (SC) and broken‐and‐intact‐cells (BIC) approaches as its limiting cases. The model accounts for two internal mass‐transfer resistances attributed to cell membranes and transport channels. A wide spectrum of particle‐scale extraction regimes, described by the model, agree with available up‐to‐date relatively short laboratory experiments. Simplified concepts (like SC or BIC) could only be used for available experimental data correlation, and do not allow a reliable extension to long process times. The experimental methodology was suggested to detect limiting internal mass‐transfer mechanisms.
A generalized model of a particle‐scale supercritical‐fluid‐extraction process is introduced. It is demonstrated that up‐to‐date experiments only allow identification of the initial extraction rates, which decrease or remain constant with time, depending on the assumed internal extraction regime. A methodology to detect the extraction regime in the particle is suggested.</abstract><cop>Frankfurt</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ceat.201600599</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0930-7516 |
ispartof | Chemical engineering & technology, 2017-05, Vol.40 (5), p.829-837 |
issn | 0930-7516 1521-4125 |
language | eng |
recordid | cdi_proquest_miscellaneous_1904200459 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Broken‐and‐intact‐cells model Cell membrane permeability Cell membranes Channels Chemical engineering Constraining Data correlation Extraction Extraction curves Mass transfer Mass transport Mathematical models Membranes Methodology Scale (ratio) Shrinking core model Supercritical fluids Transport |
title | Detection of Microscale Mass‐Transport Regimes in Supercritical Fluid Extraction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T07%3A14%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20Microscale%20Mass%E2%80%90Transport%20Regimes%20in%20Supercritical%20Fluid%20Extraction&rft.jtitle=Chemical%20engineering%20&%20technology&rft.au=Salamatin,%20Arthur%20A.&rft.date=2017-05&rft.volume=40&rft.issue=5&rft.spage=829&rft.epage=837&rft.pages=829-837&rft.issn=0930-7516&rft.eissn=1521-4125&rft_id=info:doi/10.1002/ceat.201600599&rft_dat=%3Cproquest_cross%3E1904200459%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1920462273&rft_id=info:pmid/&rfr_iscdi=true |