Detection of Microscale Mass‐Transport Regimes in Supercritical Fluid Extraction

The problem of detecting supercritical fluid extraction regimes on the particle‐scale level is discussed by using a generalized multiparameter model, which includes the shrinking‐core (SC) and broken‐and‐intact‐cells (BIC) approaches as its limiting cases. The model accounts for two internal mass‐tr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering & technology 2017-05, Vol.40 (5), p.829-837
1. Verfasser: Salamatin, Arthur A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 837
container_issue 5
container_start_page 829
container_title Chemical engineering & technology
container_volume 40
creator Salamatin, Arthur A.
description The problem of detecting supercritical fluid extraction regimes on the particle‐scale level is discussed by using a generalized multiparameter model, which includes the shrinking‐core (SC) and broken‐and‐intact‐cells (BIC) approaches as its limiting cases. The model accounts for two internal mass‐transfer resistances attributed to cell membranes and transport channels. A wide spectrum of particle‐scale extraction regimes, described by the model, agree with available up‐to‐date relatively short laboratory experiments. Simplified concepts (like SC or BIC) could only be used for available experimental data correlation, and do not allow a reliable extension to long process times. The experimental methodology was suggested to detect limiting internal mass‐transfer mechanisms. A generalized model of a particle‐scale supercritical‐fluid‐extraction process is introduced. It is demonstrated that up‐to‐date experiments only allow identification of the initial extraction rates, which decrease or remain constant with time, depending on the assumed internal extraction regime. A methodology to detect the extraction regime in the particle is suggested.
doi_str_mv 10.1002/ceat.201600599
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1904200459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1904200459</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3879-b4474db08b1360dd13403ee5ed67e1d250a666e04931ed4174504fa694f891a3</originalsourceid><addsrcrecordid>eNqFkM1Kw0AUhQdRsFa3rgfcuEm985NJZ1lqq4JFqNkP0-RGpqRJnEnQ7nwEn9EnMbWi4MbV5cB3DpePkHMGIwbArzK07YgDUwCx1gdkwGLOIsl4fEgGoAVESczUMTkJYQ0ArA8DsrzGFrPW1RWtC7pwma9DZkukCxvCx9t76m0Vmtq3dIlPboOBuoo-dg36zLvW9Sidl53L6ey19fZr6JQcFbYMePZ9hySdz9LpbXT_cHM3ndxHmRgnOlpJmch8BeMVEwrynAkJAjHGXCXIch6DVUohSC0Y5pIlMgZZWKVlMdbMiiG53M82vn7uMLRm40KGZWkrrLtgmAbJAWSse_TiD7quO1_1z_UUB6k4T0RPjfbUzkHwWJjGu431W8PA7AybnWHzY7gv6H3hxZW4_Yc209kk_e1-Arr1f3Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1920462273</pqid></control><display><type>article</type><title>Detection of Microscale Mass‐Transport Regimes in Supercritical Fluid Extraction</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Salamatin, Arthur A.</creator><creatorcontrib>Salamatin, Arthur A.</creatorcontrib><description>The problem of detecting supercritical fluid extraction regimes on the particle‐scale level is discussed by using a generalized multiparameter model, which includes the shrinking‐core (SC) and broken‐and‐intact‐cells (BIC) approaches as its limiting cases. The model accounts for two internal mass‐transfer resistances attributed to cell membranes and transport channels. A wide spectrum of particle‐scale extraction regimes, described by the model, agree with available up‐to‐date relatively short laboratory experiments. Simplified concepts (like SC or BIC) could only be used for available experimental data correlation, and do not allow a reliable extension to long process times. The experimental methodology was suggested to detect limiting internal mass‐transfer mechanisms. A generalized model of a particle‐scale supercritical‐fluid‐extraction process is introduced. It is demonstrated that up‐to‐date experiments only allow identification of the initial extraction rates, which decrease or remain constant with time, depending on the assumed internal extraction regime. A methodology to detect the extraction regime in the particle is suggested.</description><identifier>ISSN: 0930-7516</identifier><identifier>EISSN: 1521-4125</identifier><identifier>DOI: 10.1002/ceat.201600599</identifier><language>eng</language><publisher>Frankfurt: Wiley Subscription Services, Inc</publisher><subject>Broken‐and‐intact‐cells model ; Cell membrane permeability ; Cell membranes ; Channels ; Chemical engineering ; Constraining ; Data correlation ; Extraction ; Extraction curves ; Mass transfer ; Mass transport ; Mathematical models ; Membranes ; Methodology ; Scale (ratio) ; Shrinking core model ; Supercritical fluids ; Transport</subject><ispartof>Chemical engineering &amp; technology, 2017-05, Vol.40 (5), p.829-837</ispartof><rights>2017 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3879-b4474db08b1360dd13403ee5ed67e1d250a666e04931ed4174504fa694f891a3</citedby><cites>FETCH-LOGICAL-c3879-b4474db08b1360dd13403ee5ed67e1d250a666e04931ed4174504fa694f891a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fceat.201600599$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fceat.201600599$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Salamatin, Arthur A.</creatorcontrib><title>Detection of Microscale Mass‐Transport Regimes in Supercritical Fluid Extraction</title><title>Chemical engineering &amp; technology</title><description>The problem of detecting supercritical fluid extraction regimes on the particle‐scale level is discussed by using a generalized multiparameter model, which includes the shrinking‐core (SC) and broken‐and‐intact‐cells (BIC) approaches as its limiting cases. The model accounts for two internal mass‐transfer resistances attributed to cell membranes and transport channels. A wide spectrum of particle‐scale extraction regimes, described by the model, agree with available up‐to‐date relatively short laboratory experiments. Simplified concepts (like SC or BIC) could only be used for available experimental data correlation, and do not allow a reliable extension to long process times. The experimental methodology was suggested to detect limiting internal mass‐transfer mechanisms. A generalized model of a particle‐scale supercritical‐fluid‐extraction process is introduced. It is demonstrated that up‐to‐date experiments only allow identification of the initial extraction rates, which decrease or remain constant with time, depending on the assumed internal extraction regime. A methodology to detect the extraction regime in the particle is suggested.</description><subject>Broken‐and‐intact‐cells model</subject><subject>Cell membrane permeability</subject><subject>Cell membranes</subject><subject>Channels</subject><subject>Chemical engineering</subject><subject>Constraining</subject><subject>Data correlation</subject><subject>Extraction</subject><subject>Extraction curves</subject><subject>Mass transfer</subject><subject>Mass transport</subject><subject>Mathematical models</subject><subject>Membranes</subject><subject>Methodology</subject><subject>Scale (ratio)</subject><subject>Shrinking core model</subject><subject>Supercritical fluids</subject><subject>Transport</subject><issn>0930-7516</issn><issn>1521-4125</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkM1Kw0AUhQdRsFa3rgfcuEm985NJZ1lqq4JFqNkP0-RGpqRJnEnQ7nwEn9EnMbWi4MbV5cB3DpePkHMGIwbArzK07YgDUwCx1gdkwGLOIsl4fEgGoAVESczUMTkJYQ0ArA8DsrzGFrPW1RWtC7pwma9DZkukCxvCx9t76m0Vmtq3dIlPboOBuoo-dg36zLvW9Sidl53L6ey19fZr6JQcFbYMePZ9hySdz9LpbXT_cHM3ndxHmRgnOlpJmch8BeMVEwrynAkJAjHGXCXIch6DVUohSC0Y5pIlMgZZWKVlMdbMiiG53M82vn7uMLRm40KGZWkrrLtgmAbJAWSse_TiD7quO1_1z_UUB6k4T0RPjfbUzkHwWJjGu431W8PA7AybnWHzY7gv6H3hxZW4_Yc209kk_e1-Arr1f3Y</recordid><startdate>201705</startdate><enddate>201705</enddate><creator>Salamatin, Arthur A.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>201705</creationdate><title>Detection of Microscale Mass‐Transport Regimes in Supercritical Fluid Extraction</title><author>Salamatin, Arthur A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3879-b4474db08b1360dd13403ee5ed67e1d250a666e04931ed4174504fa694f891a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Broken‐and‐intact‐cells model</topic><topic>Cell membrane permeability</topic><topic>Cell membranes</topic><topic>Channels</topic><topic>Chemical engineering</topic><topic>Constraining</topic><topic>Data correlation</topic><topic>Extraction</topic><topic>Extraction curves</topic><topic>Mass transfer</topic><topic>Mass transport</topic><topic>Mathematical models</topic><topic>Membranes</topic><topic>Methodology</topic><topic>Scale (ratio)</topic><topic>Shrinking core model</topic><topic>Supercritical fluids</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salamatin, Arthur A.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chemical engineering &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salamatin, Arthur A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of Microscale Mass‐Transport Regimes in Supercritical Fluid Extraction</atitle><jtitle>Chemical engineering &amp; technology</jtitle><date>2017-05</date><risdate>2017</risdate><volume>40</volume><issue>5</issue><spage>829</spage><epage>837</epage><pages>829-837</pages><issn>0930-7516</issn><eissn>1521-4125</eissn><abstract>The problem of detecting supercritical fluid extraction regimes on the particle‐scale level is discussed by using a generalized multiparameter model, which includes the shrinking‐core (SC) and broken‐and‐intact‐cells (BIC) approaches as its limiting cases. The model accounts for two internal mass‐transfer resistances attributed to cell membranes and transport channels. A wide spectrum of particle‐scale extraction regimes, described by the model, agree with available up‐to‐date relatively short laboratory experiments. Simplified concepts (like SC or BIC) could only be used for available experimental data correlation, and do not allow a reliable extension to long process times. The experimental methodology was suggested to detect limiting internal mass‐transfer mechanisms. A generalized model of a particle‐scale supercritical‐fluid‐extraction process is introduced. It is demonstrated that up‐to‐date experiments only allow identification of the initial extraction rates, which decrease or remain constant with time, depending on the assumed internal extraction regime. A methodology to detect the extraction regime in the particle is suggested.</abstract><cop>Frankfurt</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ceat.201600599</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0930-7516
ispartof Chemical engineering & technology, 2017-05, Vol.40 (5), p.829-837
issn 0930-7516
1521-4125
language eng
recordid cdi_proquest_miscellaneous_1904200459
source Wiley Online Library Journals Frontfile Complete
subjects Broken‐and‐intact‐cells model
Cell membrane permeability
Cell membranes
Channels
Chemical engineering
Constraining
Data correlation
Extraction
Extraction curves
Mass transfer
Mass transport
Mathematical models
Membranes
Methodology
Scale (ratio)
Shrinking core model
Supercritical fluids
Transport
title Detection of Microscale Mass‐Transport Regimes in Supercritical Fluid Extraction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T07%3A14%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20Microscale%20Mass%E2%80%90Transport%20Regimes%20in%20Supercritical%20Fluid%20Extraction&rft.jtitle=Chemical%20engineering%20&%20technology&rft.au=Salamatin,%20Arthur%20A.&rft.date=2017-05&rft.volume=40&rft.issue=5&rft.spage=829&rft.epage=837&rft.pages=829-837&rft.issn=0930-7516&rft.eissn=1521-4125&rft_id=info:doi/10.1002/ceat.201600599&rft_dat=%3Cproquest_cross%3E1904200459%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1920462273&rft_id=info:pmid/&rfr_iscdi=true