A stochastic programming model for resequencing buffer content optimisation in mixed-model assembly lines

In mixed-model assembly lines, smooth operation of the assembly line depends on adherence to the scheduled sequence. However, during production process, this sequence is altered both intentionally and uninstentionally. A major source of unintentional sequence alteration in automobile plants is the p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of production research 2017-05, Vol.55 (10), p.2897-2912
Hauptverfasser: Gunay, Elif Elcin, Kula, Ufuk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2912
container_issue 10
container_start_page 2897
container_title International journal of production research
container_volume 55
creator Gunay, Elif Elcin
Kula, Ufuk
description In mixed-model assembly lines, smooth operation of the assembly line depends on adherence to the scheduled sequence. However, during production process, this sequence is altered both intentionally and uninstentionally. A major source of unintentional sequence alteration in automobile plants is the paint defects. A post-paint resequencing buffer, located before the final assembly is used to restore the altered sequence. Restoring the altered sequence back to the scheduled sequence requires three distinct operations in this buffer: Changing the positions (i.e. resequencing) of vehicles, inserting spare vehicles in between difficult models and replacing spare vehicles with paint defective vehicles. We develop a two-stage stochastic model to determine the optimal number of spare vehicles from each model-colour type to be placed into the Automated Storage and Retrieval System resequencing buffer that maximises the scheduled sequence achievement ratio (SSAR). The model contributes to the literature by explicitly considering above three distinct operations and random nature of paint defect occurrences. We use sample average approximation algorithm to solve the model. We provide managerial insights on how paint entrance sequence, defect rate and buffer size affect the SSAR. A value of stochastic solution shows that the model significantly outperforms its deterministic counterpart.
doi_str_mv 10.1080/00207543.2016.1227101
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1904199404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4321471843</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-e5209511d8cf1916bb271bd499d3a02b60a171edbace09aabb4c1b5501beb6f33</originalsourceid><addsrcrecordid>eNp9kUFr3DAQhUVpodu0P6Eg6CUXb2ZkyWvfEkKTFAK5pNCbkORxqmBLW0lLu_--MpteeshcBobvDW_mMfYZYYvQwwWAgJ2S7VYAdlsUYoeAb9gG265rVN__eMs2K9Os0Hv2IednqKV6uWH-iucS3U-Ti3d8n-JTMsviwxNf4kgzn2LiiTL9OlBw69gepokSdzEUCoXHffGLz6b4GLgPfPF_aGxOWpMzLXY-8tkHyh_Zu8nMmT699DP2_ebr4_Vdc_9w--366r5xEkRpSAkYFOLYuwkH7Kyt59hRDsPYGhC2A4M7pNEaRzAYY610aJUCtGS7qW3P2Plpbz2mus5FV3-O5tkEioescQCJwyBBVvTLf-hzPKRQ3WnseynVTqColDpRLsWcE016n_xi0lEj6DUA_S8AvQagXwKousuTzof6xcX8jmkedTHHOaYpmfrOrNvXV_wFToiONw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1884457212</pqid></control><display><type>article</type><title>A stochastic programming model for resequencing buffer content optimisation in mixed-model assembly lines</title><source>Business Source Complete</source><source>Taylor &amp; Francis:Master (3349 titles)</source><creator>Gunay, Elif Elcin ; Kula, Ufuk</creator><creatorcontrib>Gunay, Elif Elcin ; Kula, Ufuk</creatorcontrib><description>In mixed-model assembly lines, smooth operation of the assembly line depends on adherence to the scheduled sequence. However, during production process, this sequence is altered both intentionally and uninstentionally. A major source of unintentional sequence alteration in automobile plants is the paint defects. A post-paint resequencing buffer, located before the final assembly is used to restore the altered sequence. Restoring the altered sequence back to the scheduled sequence requires three distinct operations in this buffer: Changing the positions (i.e. resequencing) of vehicles, inserting spare vehicles in between difficult models and replacing spare vehicles with paint defective vehicles. We develop a two-stage stochastic model to determine the optimal number of spare vehicles from each model-colour type to be placed into the Automated Storage and Retrieval System resequencing buffer that maximises the scheduled sequence achievement ratio (SSAR). The model contributes to the literature by explicitly considering above three distinct operations and random nature of paint defect occurrences. We use sample average approximation algorithm to solve the model. We provide managerial insights on how paint entrance sequence, defect rate and buffer size affect the SSAR. A value of stochastic solution shows that the model significantly outperforms its deterministic counterpart.</description><identifier>ISSN: 0020-7543</identifier><identifier>EISSN: 1366-588X</identifier><identifier>DOI: 10.1080/00207543.2016.1227101</identifier><language>eng</language><publisher>London: Taylor &amp; Francis</publisher><subject>Approximation ; Assembly lines ; Automobiles ; Automotive engineering ; Buffers ; car resequencing ; Defects ; mixed-model sequencing ; Optimization ; sample average approximation ; Stochastic models ; stochastic programming ; Stochasticity ; value of stochastic solution</subject><ispartof>International journal of production research, 2017-05, Vol.55 (10), p.2897-2912</ispartof><rights>2016 Informa UK Limited, trading as Taylor &amp; Francis Group 2016</rights><rights>2016 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-e5209511d8cf1916bb271bd499d3a02b60a171edbace09aabb4c1b5501beb6f33</citedby><cites>FETCH-LOGICAL-c402t-e5209511d8cf1916bb271bd499d3a02b60a171edbace09aabb4c1b5501beb6f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/00207543.2016.1227101$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/00207543.2016.1227101$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,59647,60436</link.rule.ids></links><search><creatorcontrib>Gunay, Elif Elcin</creatorcontrib><creatorcontrib>Kula, Ufuk</creatorcontrib><title>A stochastic programming model for resequencing buffer content optimisation in mixed-model assembly lines</title><title>International journal of production research</title><description>In mixed-model assembly lines, smooth operation of the assembly line depends on adherence to the scheduled sequence. However, during production process, this sequence is altered both intentionally and uninstentionally. A major source of unintentional sequence alteration in automobile plants is the paint defects. A post-paint resequencing buffer, located before the final assembly is used to restore the altered sequence. Restoring the altered sequence back to the scheduled sequence requires three distinct operations in this buffer: Changing the positions (i.e. resequencing) of vehicles, inserting spare vehicles in between difficult models and replacing spare vehicles with paint defective vehicles. We develop a two-stage stochastic model to determine the optimal number of spare vehicles from each model-colour type to be placed into the Automated Storage and Retrieval System resequencing buffer that maximises the scheduled sequence achievement ratio (SSAR). The model contributes to the literature by explicitly considering above three distinct operations and random nature of paint defect occurrences. We use sample average approximation algorithm to solve the model. We provide managerial insights on how paint entrance sequence, defect rate and buffer size affect the SSAR. A value of stochastic solution shows that the model significantly outperforms its deterministic counterpart.</description><subject>Approximation</subject><subject>Assembly lines</subject><subject>Automobiles</subject><subject>Automotive engineering</subject><subject>Buffers</subject><subject>car resequencing</subject><subject>Defects</subject><subject>mixed-model sequencing</subject><subject>Optimization</subject><subject>sample average approximation</subject><subject>Stochastic models</subject><subject>stochastic programming</subject><subject>Stochasticity</subject><subject>value of stochastic solution</subject><issn>0020-7543</issn><issn>1366-588X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kUFr3DAQhUVpodu0P6Eg6CUXb2ZkyWvfEkKTFAK5pNCbkORxqmBLW0lLu_--MpteeshcBobvDW_mMfYZYYvQwwWAgJ2S7VYAdlsUYoeAb9gG265rVN__eMs2K9Os0Hv2IednqKV6uWH-iucS3U-Ti3d8n-JTMsviwxNf4kgzn2LiiTL9OlBw69gepokSdzEUCoXHffGLz6b4GLgPfPF_aGxOWpMzLXY-8tkHyh_Zu8nMmT699DP2_ebr4_Vdc_9w--366r5xEkRpSAkYFOLYuwkH7Kyt59hRDsPYGhC2A4M7pNEaRzAYY610aJUCtGS7qW3P2Plpbz2mus5FV3-O5tkEioescQCJwyBBVvTLf-hzPKRQ3WnseynVTqColDpRLsWcE016n_xi0lEj6DUA_S8AvQagXwKousuTzof6xcX8jmkedTHHOaYpmfrOrNvXV_wFToiONw</recordid><startdate>20170519</startdate><enddate>20170519</enddate><creator>Gunay, Elif Elcin</creator><creator>Kula, Ufuk</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis LLC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170519</creationdate><title>A stochastic programming model for resequencing buffer content optimisation in mixed-model assembly lines</title><author>Gunay, Elif Elcin ; Kula, Ufuk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-e5209511d8cf1916bb271bd499d3a02b60a171edbace09aabb4c1b5501beb6f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Approximation</topic><topic>Assembly lines</topic><topic>Automobiles</topic><topic>Automotive engineering</topic><topic>Buffers</topic><topic>car resequencing</topic><topic>Defects</topic><topic>mixed-model sequencing</topic><topic>Optimization</topic><topic>sample average approximation</topic><topic>Stochastic models</topic><topic>stochastic programming</topic><topic>Stochasticity</topic><topic>value of stochastic solution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gunay, Elif Elcin</creatorcontrib><creatorcontrib>Kula, Ufuk</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of production research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gunay, Elif Elcin</au><au>Kula, Ufuk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A stochastic programming model for resequencing buffer content optimisation in mixed-model assembly lines</atitle><jtitle>International journal of production research</jtitle><date>2017-05-19</date><risdate>2017</risdate><volume>55</volume><issue>10</issue><spage>2897</spage><epage>2912</epage><pages>2897-2912</pages><issn>0020-7543</issn><eissn>1366-588X</eissn><abstract>In mixed-model assembly lines, smooth operation of the assembly line depends on adherence to the scheduled sequence. However, during production process, this sequence is altered both intentionally and uninstentionally. A major source of unintentional sequence alteration in automobile plants is the paint defects. A post-paint resequencing buffer, located before the final assembly is used to restore the altered sequence. Restoring the altered sequence back to the scheduled sequence requires three distinct operations in this buffer: Changing the positions (i.e. resequencing) of vehicles, inserting spare vehicles in between difficult models and replacing spare vehicles with paint defective vehicles. We develop a two-stage stochastic model to determine the optimal number of spare vehicles from each model-colour type to be placed into the Automated Storage and Retrieval System resequencing buffer that maximises the scheduled sequence achievement ratio (SSAR). The model contributes to the literature by explicitly considering above three distinct operations and random nature of paint defect occurrences. We use sample average approximation algorithm to solve the model. We provide managerial insights on how paint entrance sequence, defect rate and buffer size affect the SSAR. A value of stochastic solution shows that the model significantly outperforms its deterministic counterpart.</abstract><cop>London</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/00207543.2016.1227101</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-7543
ispartof International journal of production research, 2017-05, Vol.55 (10), p.2897-2912
issn 0020-7543
1366-588X
language eng
recordid cdi_proquest_miscellaneous_1904199404
source Business Source Complete; Taylor & Francis:Master (3349 titles)
subjects Approximation
Assembly lines
Automobiles
Automotive engineering
Buffers
car resequencing
Defects
mixed-model sequencing
Optimization
sample average approximation
Stochastic models
stochastic programming
Stochasticity
value of stochastic solution
title A stochastic programming model for resequencing buffer content optimisation in mixed-model assembly lines
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A20%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20stochastic%20programming%20model%20for%20resequencing%20buffer%20content%20optimisation%20in%20mixed-model%20assembly%20lines&rft.jtitle=International%20journal%20of%20production%20research&rft.au=Gunay,%20Elif%20Elcin&rft.date=2017-05-19&rft.volume=55&rft.issue=10&rft.spage=2897&rft.epage=2912&rft.pages=2897-2912&rft.issn=0020-7543&rft.eissn=1366-588X&rft_id=info:doi/10.1080/00207543.2016.1227101&rft_dat=%3Cproquest_cross%3E4321471843%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1884457212&rft_id=info:pmid/&rfr_iscdi=true