Stochastic electron acceleration during spontaneous turbulent reconnection in a strong shock wave

Explosive phenomena such as supernova remnant shocks and solar flares have demonstrated evidence for the production of relativistic particles. Interest has therefore been renewed in collisionless shock waves and magnetic reconnection as a means to achieve such energies. Although ions can be energize...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2015-02, Vol.347 (6225), p.974-978
Hauptverfasser: Matsumoto, Y., Amano, T., Kato, T. N., Hoshino, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 978
container_issue 6225
container_start_page 974
container_title Science (American Association for the Advancement of Science)
container_volume 347
creator Matsumoto, Y.
Amano, T.
Kato, T. N.
Hoshino, M.
description Explosive phenomena such as supernova remnant shocks and solar flares have demonstrated evidence for the production of relativistic particles. Interest has therefore been renewed in collisionless shock waves and magnetic reconnection as a means to achieve such energies. Although ions can be energized during such phenomena, the relativistic energy of the electrons remains a puzzle for theory. We present supercomputer simulations showing that efficient electron energization can occur during turbulent magnetic reconnection arising from a strong collisionless shock. Upstream electrons undergo first-order Fermi acceleration by colliding with reconnection jets and magnetic islands, giving rise to a nonthermal relativistic population downstream. These results shed new light on magnetic reconnection as an agent of energy dissipation and particle acceleration in strong shock waves.
doi_str_mv 10.1126/science.1260168
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1904198810</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24746217</jstor_id><sourcerecordid>24746217</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-56d2e26db81caca5584e444daaf547503b65b907b7f8bc6b46eb751aae2a01683</originalsourceid><addsrcrecordid>eNpdkL1PwzAQxS0EEqUwMyFFYmFJayf-HFHFl1SJAZgt23FoSmoX2wHx3-MoFQPT3el-7_TuAXCJ4AKhii6j6awzdpF7iCg_AjMEBSlFBetjMIOwpiWHjJyCsxi3EOadqGdAvSRvNiqmzhS2tyYF7wplTO6DSl0emiF07r2Ie--SctYPsUhD0ENvXSqCNd65LBvJLiuLOF7I-Mabj-JbfdlzcNKqPtqLQ52Dt_u719VjuX5-eFrdrktTC5hKQpvKVrTRHBllFCEcW4xxo1RLMCOw1pRoAZlmLdeGakytZgQpZSs1_lvPwc10dx_852Bjkrsu5j_6ybREAmIkOEcwo9f_0K0fgsvuJKKEM4SwIJlaTpQJPsZgW7kP3U6FH4mgHCOXh8jlIfKsuJoU25h8-MMrzDCtEKt_AX0ggTU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1658711495</pqid></control><display><type>article</type><title>Stochastic electron acceleration during spontaneous turbulent reconnection in a strong shock wave</title><source>Jstor Complete Legacy</source><source>Science Magazine</source><creator>Matsumoto, Y. ; Amano, T. ; Kato, T. N. ; Hoshino, M.</creator><creatorcontrib>Matsumoto, Y. ; Amano, T. ; Kato, T. N. ; Hoshino, M.</creatorcontrib><description>Explosive phenomena such as supernova remnant shocks and solar flares have demonstrated evidence for the production of relativistic particles. Interest has therefore been renewed in collisionless shock waves and magnetic reconnection as a means to achieve such energies. Although ions can be energized during such phenomena, the relativistic energy of the electrons remains a puzzle for theory. We present supercomputer simulations showing that efficient electron energization can occur during turbulent magnetic reconnection arising from a strong collisionless shock. Upstream electrons undergo first-order Fermi acceleration by colliding with reconnection jets and magnetic islands, giving rise to a nonthermal relativistic population downstream. These results shed new light on magnetic reconnection as an agent of energy dissipation and particle acceleration in strong shock waves.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1260168</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington: American Association for the Advancement of Science</publisher><subject>Acceleration ; Activation ; Charged particles ; Electrons ; Fluid dynamics ; Physics ; Shock layers ; Shock waves ; Stochastic models ; Turbulence ; Turbulent flow</subject><ispartof>Science (American Association for the Advancement of Science), 2015-02, Vol.347 (6225), p.974-978</ispartof><rights>Copyright © 2015 American Association for the Advancement of Science</rights><rights>Copyright © 2015, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-56d2e26db81caca5584e444daaf547503b65b907b7f8bc6b46eb751aae2a01683</citedby><cites>FETCH-LOGICAL-c390t-56d2e26db81caca5584e444daaf547503b65b907b7f8bc6b46eb751aae2a01683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24746217$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24746217$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,2871,2872,27901,27902,57992,58225</link.rule.ids></links><search><creatorcontrib>Matsumoto, Y.</creatorcontrib><creatorcontrib>Amano, T.</creatorcontrib><creatorcontrib>Kato, T. N.</creatorcontrib><creatorcontrib>Hoshino, M.</creatorcontrib><title>Stochastic electron acceleration during spontaneous turbulent reconnection in a strong shock wave</title><title>Science (American Association for the Advancement of Science)</title><description>Explosive phenomena such as supernova remnant shocks and solar flares have demonstrated evidence for the production of relativistic particles. Interest has therefore been renewed in collisionless shock waves and magnetic reconnection as a means to achieve such energies. Although ions can be energized during such phenomena, the relativistic energy of the electrons remains a puzzle for theory. We present supercomputer simulations showing that efficient electron energization can occur during turbulent magnetic reconnection arising from a strong collisionless shock. Upstream electrons undergo first-order Fermi acceleration by colliding with reconnection jets and magnetic islands, giving rise to a nonthermal relativistic population downstream. These results shed new light on magnetic reconnection as an agent of energy dissipation and particle acceleration in strong shock waves.</description><subject>Acceleration</subject><subject>Activation</subject><subject>Charged particles</subject><subject>Electrons</subject><subject>Fluid dynamics</subject><subject>Physics</subject><subject>Shock layers</subject><subject>Shock waves</subject><subject>Stochastic models</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpdkL1PwzAQxS0EEqUwMyFFYmFJayf-HFHFl1SJAZgt23FoSmoX2wHx3-MoFQPT3el-7_TuAXCJ4AKhii6j6awzdpF7iCg_AjMEBSlFBetjMIOwpiWHjJyCsxi3EOadqGdAvSRvNiqmzhS2tyYF7wplTO6DSl0emiF07r2Ie--SctYPsUhD0ENvXSqCNd65LBvJLiuLOF7I-Mabj-JbfdlzcNKqPtqLQ52Dt_u719VjuX5-eFrdrktTC5hKQpvKVrTRHBllFCEcW4xxo1RLMCOw1pRoAZlmLdeGakytZgQpZSs1_lvPwc10dx_852Bjkrsu5j_6ybREAmIkOEcwo9f_0K0fgsvuJKKEM4SwIJlaTpQJPsZgW7kP3U6FH4mgHCOXh8jlIfKsuJoU25h8-MMrzDCtEKt_AX0ggTU</recordid><startdate>20150227</startdate><enddate>20150227</enddate><creator>Matsumoto, Y.</creator><creator>Amano, T.</creator><creator>Kato, T. N.</creator><creator>Hoshino, M.</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20150227</creationdate><title>Stochastic electron acceleration during spontaneous turbulent reconnection in a strong shock wave</title><author>Matsumoto, Y. ; Amano, T. ; Kato, T. N. ; Hoshino, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-56d2e26db81caca5584e444daaf547503b65b907b7f8bc6b46eb751aae2a01683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Acceleration</topic><topic>Activation</topic><topic>Charged particles</topic><topic>Electrons</topic><topic>Fluid dynamics</topic><topic>Physics</topic><topic>Shock layers</topic><topic>Shock waves</topic><topic>Stochastic models</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matsumoto, Y.</creatorcontrib><creatorcontrib>Amano, T.</creatorcontrib><creatorcontrib>Kato, T. N.</creatorcontrib><creatorcontrib>Hoshino, M.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matsumoto, Y.</au><au>Amano, T.</au><au>Kato, T. N.</au><au>Hoshino, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic electron acceleration during spontaneous turbulent reconnection in a strong shock wave</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><date>2015-02-27</date><risdate>2015</risdate><volume>347</volume><issue>6225</issue><spage>974</spage><epage>978</epage><pages>974-978</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Explosive phenomena such as supernova remnant shocks and solar flares have demonstrated evidence for the production of relativistic particles. Interest has therefore been renewed in collisionless shock waves and magnetic reconnection as a means to achieve such energies. Although ions can be energized during such phenomena, the relativistic energy of the electrons remains a puzzle for theory. We present supercomputer simulations showing that efficient electron energization can occur during turbulent magnetic reconnection arising from a strong collisionless shock. Upstream electrons undergo first-order Fermi acceleration by colliding with reconnection jets and magnetic islands, giving rise to a nonthermal relativistic population downstream. These results shed new light on magnetic reconnection as an agent of energy dissipation and particle acceleration in strong shock waves.</abstract><cop>Washington</cop><pub>American Association for the Advancement of Science</pub><doi>10.1126/science.1260168</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2015-02, Vol.347 (6225), p.974-978
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_1904198810
source Jstor Complete Legacy; Science Magazine
subjects Acceleration
Activation
Charged particles
Electrons
Fluid dynamics
Physics
Shock layers
Shock waves
Stochastic models
Turbulence
Turbulent flow
title Stochastic electron acceleration during spontaneous turbulent reconnection in a strong shock wave
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T11%3A22%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20electron%20acceleration%20during%20spontaneous%20turbulent%20reconnection%20in%20a%20strong%20shock%20wave&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Matsumoto,%20Y.&rft.date=2015-02-27&rft.volume=347&rft.issue=6225&rft.spage=974&rft.epage=978&rft.pages=974-978&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1260168&rft_dat=%3Cjstor_proqu%3E24746217%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1658711495&rft_id=info:pmid/&rft_jstor_id=24746217&rfr_iscdi=true