Estimation of the Magnetic Flux Emergence Rate in the Quiet Sun from Sunrise Data

Small-scale internetwork (IN) features are thought to be the major source of fresh magnetic flux in the quiet Sun. During its first science flight in 2009, the balloon-borne observatory Sunrise captured images of the magnetic fields in the quiet Sun at a high spatial resolution. Using these data we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal. Supplement series 2017-03, Vol.229 (1), p.17-17
Hauptverfasser: Smitha, H. N., Anusha, L. S., Solanki, S. K., Riethmüller, T. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17
container_issue 1
container_start_page 17
container_title The Astrophysical journal. Supplement series
container_volume 229
creator Smitha, H. N.
Anusha, L. S.
Solanki, S. K.
Riethmüller, T. L.
description Small-scale internetwork (IN) features are thought to be the major source of fresh magnetic flux in the quiet Sun. During its first science flight in 2009, the balloon-borne observatory Sunrise captured images of the magnetic fields in the quiet Sun at a high spatial resolution. Using these data we measure the rate at which the IN features bring magnetic flux to the solar surface. In a previous paper it was found that the lowest magnetic flux in small-scale features detected using the Sunrise observations is 9 × 1014 Mx. This is nearly an order of magnitude smaller than the smallest fluxes of features detected in observations from the Hinode satellite. In this paper, we compute the flux emergence rate (FER) by accounting for such small fluxes, which was not possible before Sunrise. By tracking the features with fluxes in the range Mx, we measure an FER of . The smaller features with fluxes Mx are found to be the dominant contributors to the solar magnetic flux. The FER found here is an order of magnitude higher than the rate from Hinode, obtained with a similar feature tracking technique. A wider comparison with the literature shows, however, that the exact technique of determining the rate of the appearance of new flux can lead to results that differ by up to two orders of magnitude, even when applied to similar data. The causes of this discrepancy are discussed and first qualitative explanations proposed.
doi_str_mv 10.3847/1538-4365/229/1/17
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_proquest_miscellaneous_1904198332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1904198332</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-617f63f6c13ab037c9f382b74261a45ae069520f6ae9d31aee7a6105366310ac3</originalsourceid><addsrcrecordid>eNqFkU1PGzEQhi1UJFLgD3Cy1Esvm4ztXX8cqzQUJBAC2rPluLPgKLFT2yvBv-8uqTiWk0fW845mniHkgsFc6FYtWCd00wrZLTg3C7Zg6ojM3j8_kRmAVA1Aa07I51I2AKA6YWbkflVq2LkaUqSpp_UZ6a17iliDp5fb4YWudpifMHqkD64iDfGNuR8CVvo4RNrntJuKHArS7666M3Lcu23B83_vKfl1ufq5vGpu7n5cL7_dNL41UBvJVC9FLz0Tbg1CedMLzdeq5ZK5tnMI0nQceunQ_BbMISonGXRCSsHAeXFKvhz6pnEDW3yo6J99ihF9tZxrxTWHkfp6oPY5_RmwVLsLxeN26yKmoVhmoGVGC8E_RrVRQmre6RHlB9TnVErG3u7zaDG_WgZ2Ooid3NvJ_TiKscwyNYbmh1BIe7tJQ46jnv8F_gL4FYjh</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1897368258</pqid></control><display><type>article</type><title>Estimation of the Magnetic Flux Emergence Rate in the Quiet Sun from Sunrise Data</title><source>IOP Publishing Free Content</source><creator>Smitha, H. N. ; Anusha, L. S. ; Solanki, S. K. ; Riethmüller, T. L.</creator><creatorcontrib>Smitha, H. N. ; Anusha, L. S. ; Solanki, S. K. ; Riethmüller, T. L.</creatorcontrib><description>Small-scale internetwork (IN) features are thought to be the major source of fresh magnetic flux in the quiet Sun. During its first science flight in 2009, the balloon-borne observatory Sunrise captured images of the magnetic fields in the quiet Sun at a high spatial resolution. Using these data we measure the rate at which the IN features bring magnetic flux to the solar surface. In a previous paper it was found that the lowest magnetic flux in small-scale features detected using the Sunrise observations is 9 × 1014 Mx. This is nearly an order of magnitude smaller than the smallest fluxes of features detected in observations from the Hinode satellite. In this paper, we compute the flux emergence rate (FER) by accounting for such small fluxes, which was not possible before Sunrise. By tracking the features with fluxes in the range Mx, we measure an FER of . The smaller features with fluxes Mx are found to be the dominant contributors to the solar magnetic flux. The FER found here is an order of magnitude higher than the rate from Hinode, obtained with a similar feature tracking technique. A wider comparison with the literature shows, however, that the exact technique of determining the rate of the appearance of new flux can lead to results that differ by up to two orders of magnitude, even when applied to similar data. The causes of this discrepancy are discussed and first qualitative explanations proposed.</description><identifier>ISSN: 0067-0049</identifier><identifier>ISSN: 1538-4365</identifier><identifier>EISSN: 1538-4365</identifier><identifier>DOI: 10.3847/1538-4365/229/1/17</identifier><language>eng</language><publisher>United States: The American Astronomical Society</publisher><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY ; Emergence ; Fluxes ; MAGNETIC FIELDS ; MAGNETIC FLUX ; PHOTOSPHERE ; SATELLITES ; Small scale ; SPATIAL RESOLUTION ; SUN ; Sun: atmosphere ; Sun: magnetic fields ; Sun: photosphere ; Sunrise ; SURFACES ; Tracking</subject><ispartof>The Astrophysical journal. Supplement series, 2017-03, Vol.229 (1), p.17-17</ispartof><rights>2017. The American Astronomical Society. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c490t-617f63f6c13ab037c9f382b74261a45ae069520f6ae9d31aee7a6105366310ac3</citedby><cites>FETCH-LOGICAL-c490t-617f63f6c13ab037c9f382b74261a45ae069520f6ae9d31aee7a6105366310ac3</cites><orcidid>0000-0003-3490-6532</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4365/229/1/17/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,776,780,881,27903,27904,38847,38869,53818,53845</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4365/229/1/17$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/22872820$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Smitha, H. N.</creatorcontrib><creatorcontrib>Anusha, L. S.</creatorcontrib><creatorcontrib>Solanki, S. K.</creatorcontrib><creatorcontrib>Riethmüller, T. L.</creatorcontrib><title>Estimation of the Magnetic Flux Emergence Rate in the Quiet Sun from Sunrise Data</title><title>The Astrophysical journal. Supplement series</title><addtitle>APJS</addtitle><addtitle>Astrophys. J. Suppl</addtitle><description>Small-scale internetwork (IN) features are thought to be the major source of fresh magnetic flux in the quiet Sun. During its first science flight in 2009, the balloon-borne observatory Sunrise captured images of the magnetic fields in the quiet Sun at a high spatial resolution. Using these data we measure the rate at which the IN features bring magnetic flux to the solar surface. In a previous paper it was found that the lowest magnetic flux in small-scale features detected using the Sunrise observations is 9 × 1014 Mx. This is nearly an order of magnitude smaller than the smallest fluxes of features detected in observations from the Hinode satellite. In this paper, we compute the flux emergence rate (FER) by accounting for such small fluxes, which was not possible before Sunrise. By tracking the features with fluxes in the range Mx, we measure an FER of . The smaller features with fluxes Mx are found to be the dominant contributors to the solar magnetic flux. The FER found here is an order of magnitude higher than the rate from Hinode, obtained with a similar feature tracking technique. A wider comparison with the literature shows, however, that the exact technique of determining the rate of the appearance of new flux can lead to results that differ by up to two orders of magnitude, even when applied to similar data. The causes of this discrepancy are discussed and first qualitative explanations proposed.</description><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</subject><subject>Emergence</subject><subject>Fluxes</subject><subject>MAGNETIC FIELDS</subject><subject>MAGNETIC FLUX</subject><subject>PHOTOSPHERE</subject><subject>SATELLITES</subject><subject>Small scale</subject><subject>SPATIAL RESOLUTION</subject><subject>SUN</subject><subject>Sun: atmosphere</subject><subject>Sun: magnetic fields</subject><subject>Sun: photosphere</subject><subject>Sunrise</subject><subject>SURFACES</subject><subject>Tracking</subject><issn>0067-0049</issn><issn>1538-4365</issn><issn>1538-4365</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkU1PGzEQhi1UJFLgD3Cy1Esvm4ztXX8cqzQUJBAC2rPluLPgKLFT2yvBv-8uqTiWk0fW845mniHkgsFc6FYtWCd00wrZLTg3C7Zg6ojM3j8_kRmAVA1Aa07I51I2AKA6YWbkflVq2LkaUqSpp_UZ6a17iliDp5fb4YWudpifMHqkD64iDfGNuR8CVvo4RNrntJuKHArS7666M3Lcu23B83_vKfl1ufq5vGpu7n5cL7_dNL41UBvJVC9FLz0Tbg1CedMLzdeq5ZK5tnMI0nQceunQ_BbMISonGXRCSsHAeXFKvhz6pnEDW3yo6J99ihF9tZxrxTWHkfp6oPY5_RmwVLsLxeN26yKmoVhmoGVGC8E_RrVRQmre6RHlB9TnVErG3u7zaDG_WgZ2Ooid3NvJ_TiKscwyNYbmh1BIe7tJQ46jnv8F_gL4FYjh</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Smitha, H. N.</creator><creator>Anusha, L. S.</creator><creator>Solanki, S. K.</creator><creator>Riethmüller, T. L.</creator><general>The American Astronomical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-3490-6532</orcidid></search><sort><creationdate>20170301</creationdate><title>Estimation of the Magnetic Flux Emergence Rate in the Quiet Sun from Sunrise Data</title><author>Smitha, H. N. ; Anusha, L. S. ; Solanki, S. K. ; Riethmüller, T. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-617f63f6c13ab037c9f382b74261a45ae069520f6ae9d31aee7a6105366310ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</topic><topic>Emergence</topic><topic>Fluxes</topic><topic>MAGNETIC FIELDS</topic><topic>MAGNETIC FLUX</topic><topic>PHOTOSPHERE</topic><topic>SATELLITES</topic><topic>Small scale</topic><topic>SPATIAL RESOLUTION</topic><topic>SUN</topic><topic>Sun: atmosphere</topic><topic>Sun: magnetic fields</topic><topic>Sun: photosphere</topic><topic>Sunrise</topic><topic>SURFACES</topic><topic>Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smitha, H. N.</creatorcontrib><creatorcontrib>Anusha, L. S.</creatorcontrib><creatorcontrib>Solanki, S. K.</creatorcontrib><creatorcontrib>Riethmüller, T. L.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical journal. Supplement series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Smitha, H. N.</au><au>Anusha, L. S.</au><au>Solanki, S. K.</au><au>Riethmüller, T. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of the Magnetic Flux Emergence Rate in the Quiet Sun from Sunrise Data</atitle><jtitle>The Astrophysical journal. Supplement series</jtitle><stitle>APJS</stitle><addtitle>Astrophys. J. Suppl</addtitle><date>2017-03-01</date><risdate>2017</risdate><volume>229</volume><issue>1</issue><spage>17</spage><epage>17</epage><pages>17-17</pages><issn>0067-0049</issn><issn>1538-4365</issn><eissn>1538-4365</eissn><abstract>Small-scale internetwork (IN) features are thought to be the major source of fresh magnetic flux in the quiet Sun. During its first science flight in 2009, the balloon-borne observatory Sunrise captured images of the magnetic fields in the quiet Sun at a high spatial resolution. Using these data we measure the rate at which the IN features bring magnetic flux to the solar surface. In a previous paper it was found that the lowest magnetic flux in small-scale features detected using the Sunrise observations is 9 × 1014 Mx. This is nearly an order of magnitude smaller than the smallest fluxes of features detected in observations from the Hinode satellite. In this paper, we compute the flux emergence rate (FER) by accounting for such small fluxes, which was not possible before Sunrise. By tracking the features with fluxes in the range Mx, we measure an FER of . The smaller features with fluxes Mx are found to be the dominant contributors to the solar magnetic flux. The FER found here is an order of magnitude higher than the rate from Hinode, obtained with a similar feature tracking technique. A wider comparison with the literature shows, however, that the exact technique of determining the rate of the appearance of new flux can lead to results that differ by up to two orders of magnitude, even when applied to similar data. The causes of this discrepancy are discussed and first qualitative explanations proposed.</abstract><cop>United States</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4365/229/1/17</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3490-6532</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0067-0049
ispartof The Astrophysical journal. Supplement series, 2017-03, Vol.229 (1), p.17-17
issn 0067-0049
1538-4365
1538-4365
language eng
recordid cdi_proquest_miscellaneous_1904198332
source IOP Publishing Free Content
subjects ASTROPHYSICS, COSMOLOGY AND ASTRONOMY
Emergence
Fluxes
MAGNETIC FIELDS
MAGNETIC FLUX
PHOTOSPHERE
SATELLITES
Small scale
SPATIAL RESOLUTION
SUN
Sun: atmosphere
Sun: magnetic fields
Sun: photosphere
Sunrise
SURFACES
Tracking
title Estimation of the Magnetic Flux Emergence Rate in the Quiet Sun from Sunrise Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A37%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20the%20Magnetic%20Flux%20Emergence%20Rate%20in%20the%20Quiet%20Sun%20from%20Sunrise%20Data&rft.jtitle=The%20Astrophysical%20journal.%20Supplement%20series&rft.au=Smitha,%20H.%20N.&rft.date=2017-03-01&rft.volume=229&rft.issue=1&rft.spage=17&rft.epage=17&rft.pages=17-17&rft.issn=0067-0049&rft.eissn=1538-4365&rft_id=info:doi/10.3847/1538-4365/229/1/17&rft_dat=%3Cproquest_O3W%3E1904198332%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1897368258&rft_id=info:pmid/&rfr_iscdi=true