Estimation of the Magnetic Flux Emergence Rate in the Quiet Sun from Sunrise Data
Small-scale internetwork (IN) features are thought to be the major source of fresh magnetic flux in the quiet Sun. During its first science flight in 2009, the balloon-borne observatory Sunrise captured images of the magnetic fields in the quiet Sun at a high spatial resolution. Using these data we...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal. Supplement series 2017-03, Vol.229 (1), p.17-17 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17 |
---|---|
container_issue | 1 |
container_start_page | 17 |
container_title | The Astrophysical journal. Supplement series |
container_volume | 229 |
creator | Smitha, H. N. Anusha, L. S. Solanki, S. K. Riethmüller, T. L. |
description | Small-scale internetwork (IN) features are thought to be the major source of fresh magnetic flux in the quiet Sun. During its first science flight in 2009, the balloon-borne observatory Sunrise captured images of the magnetic fields in the quiet Sun at a high spatial resolution. Using these data we measure the rate at which the IN features bring magnetic flux to the solar surface. In a previous paper it was found that the lowest magnetic flux in small-scale features detected using the Sunrise observations is 9 × 1014 Mx. This is nearly an order of magnitude smaller than the smallest fluxes of features detected in observations from the Hinode satellite. In this paper, we compute the flux emergence rate (FER) by accounting for such small fluxes, which was not possible before Sunrise. By tracking the features with fluxes in the range Mx, we measure an FER of . The smaller features with fluxes Mx are found to be the dominant contributors to the solar magnetic flux. The FER found here is an order of magnitude higher than the rate from Hinode, obtained with a similar feature tracking technique. A wider comparison with the literature shows, however, that the exact technique of determining the rate of the appearance of new flux can lead to results that differ by up to two orders of magnitude, even when applied to similar data. The causes of this discrepancy are discussed and first qualitative explanations proposed. |
doi_str_mv | 10.3847/1538-4365/229/1/17 |
format | Article |
fullrecord | <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_proquest_miscellaneous_1904198332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1904198332</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-617f63f6c13ab037c9f382b74261a45ae069520f6ae9d31aee7a6105366310ac3</originalsourceid><addsrcrecordid>eNqFkU1PGzEQhi1UJFLgD3Cy1Esvm4ztXX8cqzQUJBAC2rPluLPgKLFT2yvBv-8uqTiWk0fW845mniHkgsFc6FYtWCd00wrZLTg3C7Zg6ojM3j8_kRmAVA1Aa07I51I2AKA6YWbkflVq2LkaUqSpp_UZ6a17iliDp5fb4YWudpifMHqkD64iDfGNuR8CVvo4RNrntJuKHArS7666M3Lcu23B83_vKfl1ufq5vGpu7n5cL7_dNL41UBvJVC9FLz0Tbg1CedMLzdeq5ZK5tnMI0nQceunQ_BbMISonGXRCSsHAeXFKvhz6pnEDW3yo6J99ihF9tZxrxTWHkfp6oPY5_RmwVLsLxeN26yKmoVhmoGVGC8E_RrVRQmre6RHlB9TnVErG3u7zaDG_WgZ2Ooid3NvJ_TiKscwyNYbmh1BIe7tJQ46jnv8F_gL4FYjh</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1897368258</pqid></control><display><type>article</type><title>Estimation of the Magnetic Flux Emergence Rate in the Quiet Sun from Sunrise Data</title><source>IOP Publishing Free Content</source><creator>Smitha, H. N. ; Anusha, L. S. ; Solanki, S. K. ; Riethmüller, T. L.</creator><creatorcontrib>Smitha, H. N. ; Anusha, L. S. ; Solanki, S. K. ; Riethmüller, T. L.</creatorcontrib><description>Small-scale internetwork (IN) features are thought to be the major source of fresh magnetic flux in the quiet Sun. During its first science flight in 2009, the balloon-borne observatory Sunrise captured images of the magnetic fields in the quiet Sun at a high spatial resolution. Using these data we measure the rate at which the IN features bring magnetic flux to the solar surface. In a previous paper it was found that the lowest magnetic flux in small-scale features detected using the Sunrise observations is 9 × 1014 Mx. This is nearly an order of magnitude smaller than the smallest fluxes of features detected in observations from the Hinode satellite. In this paper, we compute the flux emergence rate (FER) by accounting for such small fluxes, which was not possible before Sunrise. By tracking the features with fluxes in the range Mx, we measure an FER of . The smaller features with fluxes Mx are found to be the dominant contributors to the solar magnetic flux. The FER found here is an order of magnitude higher than the rate from Hinode, obtained with a similar feature tracking technique. A wider comparison with the literature shows, however, that the exact technique of determining the rate of the appearance of new flux can lead to results that differ by up to two orders of magnitude, even when applied to similar data. The causes of this discrepancy are discussed and first qualitative explanations proposed.</description><identifier>ISSN: 0067-0049</identifier><identifier>ISSN: 1538-4365</identifier><identifier>EISSN: 1538-4365</identifier><identifier>DOI: 10.3847/1538-4365/229/1/17</identifier><language>eng</language><publisher>United States: The American Astronomical Society</publisher><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY ; Emergence ; Fluxes ; MAGNETIC FIELDS ; MAGNETIC FLUX ; PHOTOSPHERE ; SATELLITES ; Small scale ; SPATIAL RESOLUTION ; SUN ; Sun: atmosphere ; Sun: magnetic fields ; Sun: photosphere ; Sunrise ; SURFACES ; Tracking</subject><ispartof>The Astrophysical journal. Supplement series, 2017-03, Vol.229 (1), p.17-17</ispartof><rights>2017. The American Astronomical Society. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c490t-617f63f6c13ab037c9f382b74261a45ae069520f6ae9d31aee7a6105366310ac3</citedby><cites>FETCH-LOGICAL-c490t-617f63f6c13ab037c9f382b74261a45ae069520f6ae9d31aee7a6105366310ac3</cites><orcidid>0000-0003-3490-6532</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4365/229/1/17/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,776,780,881,27903,27904,38847,38869,53818,53845</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4365/229/1/17$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/22872820$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Smitha, H. N.</creatorcontrib><creatorcontrib>Anusha, L. S.</creatorcontrib><creatorcontrib>Solanki, S. K.</creatorcontrib><creatorcontrib>Riethmüller, T. L.</creatorcontrib><title>Estimation of the Magnetic Flux Emergence Rate in the Quiet Sun from Sunrise Data</title><title>The Astrophysical journal. Supplement series</title><addtitle>APJS</addtitle><addtitle>Astrophys. J. Suppl</addtitle><description>Small-scale internetwork (IN) features are thought to be the major source of fresh magnetic flux in the quiet Sun. During its first science flight in 2009, the balloon-borne observatory Sunrise captured images of the magnetic fields in the quiet Sun at a high spatial resolution. Using these data we measure the rate at which the IN features bring magnetic flux to the solar surface. In a previous paper it was found that the lowest magnetic flux in small-scale features detected using the Sunrise observations is 9 × 1014 Mx. This is nearly an order of magnitude smaller than the smallest fluxes of features detected in observations from the Hinode satellite. In this paper, we compute the flux emergence rate (FER) by accounting for such small fluxes, which was not possible before Sunrise. By tracking the features with fluxes in the range Mx, we measure an FER of . The smaller features with fluxes Mx are found to be the dominant contributors to the solar magnetic flux. The FER found here is an order of magnitude higher than the rate from Hinode, obtained with a similar feature tracking technique. A wider comparison with the literature shows, however, that the exact technique of determining the rate of the appearance of new flux can lead to results that differ by up to two orders of magnitude, even when applied to similar data. The causes of this discrepancy are discussed and first qualitative explanations proposed.</description><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</subject><subject>Emergence</subject><subject>Fluxes</subject><subject>MAGNETIC FIELDS</subject><subject>MAGNETIC FLUX</subject><subject>PHOTOSPHERE</subject><subject>SATELLITES</subject><subject>Small scale</subject><subject>SPATIAL RESOLUTION</subject><subject>SUN</subject><subject>Sun: atmosphere</subject><subject>Sun: magnetic fields</subject><subject>Sun: photosphere</subject><subject>Sunrise</subject><subject>SURFACES</subject><subject>Tracking</subject><issn>0067-0049</issn><issn>1538-4365</issn><issn>1538-4365</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkU1PGzEQhi1UJFLgD3Cy1Esvm4ztXX8cqzQUJBAC2rPluLPgKLFT2yvBv-8uqTiWk0fW845mniHkgsFc6FYtWCd00wrZLTg3C7Zg6ojM3j8_kRmAVA1Aa07I51I2AKA6YWbkflVq2LkaUqSpp_UZ6a17iliDp5fb4YWudpifMHqkD64iDfGNuR8CVvo4RNrntJuKHArS7666M3Lcu23B83_vKfl1ufq5vGpu7n5cL7_dNL41UBvJVC9FLz0Tbg1CedMLzdeq5ZK5tnMI0nQceunQ_BbMISonGXRCSsHAeXFKvhz6pnEDW3yo6J99ihF9tZxrxTWHkfp6oPY5_RmwVLsLxeN26yKmoVhmoGVGC8E_RrVRQmre6RHlB9TnVErG3u7zaDG_WgZ2Ooid3NvJ_TiKscwyNYbmh1BIe7tJQ46jnv8F_gL4FYjh</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Smitha, H. N.</creator><creator>Anusha, L. S.</creator><creator>Solanki, S. K.</creator><creator>Riethmüller, T. L.</creator><general>The American Astronomical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-3490-6532</orcidid></search><sort><creationdate>20170301</creationdate><title>Estimation of the Magnetic Flux Emergence Rate in the Quiet Sun from Sunrise Data</title><author>Smitha, H. N. ; Anusha, L. S. ; Solanki, S. K. ; Riethmüller, T. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-617f63f6c13ab037c9f382b74261a45ae069520f6ae9d31aee7a6105366310ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</topic><topic>Emergence</topic><topic>Fluxes</topic><topic>MAGNETIC FIELDS</topic><topic>MAGNETIC FLUX</topic><topic>PHOTOSPHERE</topic><topic>SATELLITES</topic><topic>Small scale</topic><topic>SPATIAL RESOLUTION</topic><topic>SUN</topic><topic>Sun: atmosphere</topic><topic>Sun: magnetic fields</topic><topic>Sun: photosphere</topic><topic>Sunrise</topic><topic>SURFACES</topic><topic>Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smitha, H. N.</creatorcontrib><creatorcontrib>Anusha, L. S.</creatorcontrib><creatorcontrib>Solanki, S. K.</creatorcontrib><creatorcontrib>Riethmüller, T. L.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical journal. Supplement series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Smitha, H. N.</au><au>Anusha, L. S.</au><au>Solanki, S. K.</au><au>Riethmüller, T. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of the Magnetic Flux Emergence Rate in the Quiet Sun from Sunrise Data</atitle><jtitle>The Astrophysical journal. Supplement series</jtitle><stitle>APJS</stitle><addtitle>Astrophys. J. Suppl</addtitle><date>2017-03-01</date><risdate>2017</risdate><volume>229</volume><issue>1</issue><spage>17</spage><epage>17</epage><pages>17-17</pages><issn>0067-0049</issn><issn>1538-4365</issn><eissn>1538-4365</eissn><abstract>Small-scale internetwork (IN) features are thought to be the major source of fresh magnetic flux in the quiet Sun. During its first science flight in 2009, the balloon-borne observatory Sunrise captured images of the magnetic fields in the quiet Sun at a high spatial resolution. Using these data we measure the rate at which the IN features bring magnetic flux to the solar surface. In a previous paper it was found that the lowest magnetic flux in small-scale features detected using the Sunrise observations is 9 × 1014 Mx. This is nearly an order of magnitude smaller than the smallest fluxes of features detected in observations from the Hinode satellite. In this paper, we compute the flux emergence rate (FER) by accounting for such small fluxes, which was not possible before Sunrise. By tracking the features with fluxes in the range Mx, we measure an FER of . The smaller features with fluxes Mx are found to be the dominant contributors to the solar magnetic flux. The FER found here is an order of magnitude higher than the rate from Hinode, obtained with a similar feature tracking technique. A wider comparison with the literature shows, however, that the exact technique of determining the rate of the appearance of new flux can lead to results that differ by up to two orders of magnitude, even when applied to similar data. The causes of this discrepancy are discussed and first qualitative explanations proposed.</abstract><cop>United States</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4365/229/1/17</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3490-6532</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0067-0049 |
ispartof | The Astrophysical journal. Supplement series, 2017-03, Vol.229 (1), p.17-17 |
issn | 0067-0049 1538-4365 1538-4365 |
language | eng |
recordid | cdi_proquest_miscellaneous_1904198332 |
source | IOP Publishing Free Content |
subjects | ASTROPHYSICS, COSMOLOGY AND ASTRONOMY Emergence Fluxes MAGNETIC FIELDS MAGNETIC FLUX PHOTOSPHERE SATELLITES Small scale SPATIAL RESOLUTION SUN Sun: atmosphere Sun: magnetic fields Sun: photosphere Sunrise SURFACES Tracking |
title | Estimation of the Magnetic Flux Emergence Rate in the Quiet Sun from Sunrise Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A37%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20the%20Magnetic%20Flux%20Emergence%20Rate%20in%20the%20Quiet%20Sun%20from%20Sunrise%20Data&rft.jtitle=The%20Astrophysical%20journal.%20Supplement%20series&rft.au=Smitha,%20H.%20N.&rft.date=2017-03-01&rft.volume=229&rft.issue=1&rft.spage=17&rft.epage=17&rft.pages=17-17&rft.issn=0067-0049&rft.eissn=1538-4365&rft_id=info:doi/10.3847/1538-4365/229/1/17&rft_dat=%3Cproquest_O3W%3E1904198332%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1897368258&rft_id=info:pmid/&rfr_iscdi=true |