Recent advancements in electrospinning design for tissue engineering applications: A review

Electrospinning, a technique used to fabricate fibrous scaffolds, has gained popularity in recent years as a method to produce tissue engineered grafts with architectural similarities to the extracellular matrix. Beyond its versatility in material selection, electrospinning also provides many tools...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical materials research. Part A 2017-10, Vol.105 (10), p.2892-2905
Hauptverfasser: Kishan, Alysha P., Cosgriff‐Hernandez, Elizabeth M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2905
container_issue 10
container_start_page 2892
container_title Journal of biomedical materials research. Part A
container_volume 105
creator Kishan, Alysha P.
Cosgriff‐Hernandez, Elizabeth M.
description Electrospinning, a technique used to fabricate fibrous scaffolds, has gained popularity in recent years as a method to produce tissue engineered grafts with architectural similarities to the extracellular matrix. Beyond its versatility in material selection, electrospinning also provides many tools to tune the fiber morphology and scaffold geometry. Recent efforts have focused on extending the capabilities of electrospinning to produce scaffolds that better recapitulate tissue properties and enhance regeneration. This review highlights these advancements by providing an overview of the processing variables and setups used to modulate scaffold architecture, discussing strategies to improve cellular infiltration and guide cell behavior, and providing a summary of electrospinning applications in tissue engineering. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2892–2905, 2017.
doi_str_mv 10.1002/jbm.a.36124
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1903944041</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1932808328</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3974-2824ceabf8a93804ded518c70d3314ee813ecb206447d700c88df7b0b68055243</originalsourceid><addsrcrecordid>eNp90M1P2zAYBnALgaB0nLhPlnZBmlL8mTi7FTTYENOkCU4cLMd5U7lKnMxOWvHf41LYYQcu9iv5p0d-H4TOKVlQQtjluuoWZsFzysQBmlEpWSbKXB7uZlFmnJX5CTqNcZ1wTiQ7RidMSZlLSWfo6Q9Y8CM29cZ4C12aI3YeQwt2DH0cnPfOr3AN0a08bvqARxfjBBj8ynmAsHs1w9A6a0bX-_gNL3GAjYPtJ3TUmDbC2ds9R4833x-uf2T3v29_Xi_vM8vLQmRMMWHBVI0yJVdE1FBLqmxBas6pAFCUg60YyYUo6oIQq1TdFBWpckXSsoLP0cU-dwj93wniqDsXLbSt8dBPUdOS8FIIImiiX_6j634KPv0uKc4UUelI6ute2dRADNDoIbjOhGdNid51rlPn2ujXzpP-_JY5VR3U_-x7yQmwPdi6Fp4_ytJ3V7-W-9QXAayMPA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1932808328</pqid></control><display><type>article</type><title>Recent advancements in electrospinning design for tissue engineering applications: A review</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kishan, Alysha P. ; Cosgriff‐Hernandez, Elizabeth M.</creator><creatorcontrib>Kishan, Alysha P. ; Cosgriff‐Hernandez, Elizabeth M.</creatorcontrib><description>Electrospinning, a technique used to fabricate fibrous scaffolds, has gained popularity in recent years as a method to produce tissue engineered grafts with architectural similarities to the extracellular matrix. Beyond its versatility in material selection, electrospinning also provides many tools to tune the fiber morphology and scaffold geometry. Recent efforts have focused on extending the capabilities of electrospinning to produce scaffolds that better recapitulate tissue properties and enhance regeneration. This review highlights these advancements by providing an overview of the processing variables and setups used to modulate scaffold architecture, discussing strategies to improve cellular infiltration and guide cell behavior, and providing a summary of electrospinning applications in tissue engineering. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2892–2905, 2017.</description><identifier>ISSN: 1549-3296</identifier><identifier>EISSN: 1552-4965</identifier><identifier>DOI: 10.1002/jbm.a.36124</identifier><identifier>PMID: 28556551</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Animals ; Biocompatible Materials - chemistry ; Cell Movement ; cell‐material interactions ; Design engineering ; Electrochemical Techniques - instrumentation ; Electrochemical Techniques - methods ; Electrospinning ; Extracellular matrix ; fiber scaffold ; Grafts ; Humans ; Infiltration ; Materials selection ; Mathematical morphology ; Porosity ; Regeneration ; Scaffolds ; Tissue engineering ; Tissue Engineering - instrumentation ; Tissue Engineering - methods ; Tissue Scaffolds - chemistry</subject><ispartof>Journal of biomedical materials research. Part A, 2017-10, Vol.105 (10), p.2892-2905</ispartof><rights>2017 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3974-2824ceabf8a93804ded518c70d3314ee813ecb206447d700c88df7b0b68055243</citedby><cites>FETCH-LOGICAL-c3974-2824ceabf8a93804ded518c70d3314ee813ecb206447d700c88df7b0b68055243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.a.36124$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.a.36124$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28556551$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kishan, Alysha P.</creatorcontrib><creatorcontrib>Cosgriff‐Hernandez, Elizabeth M.</creatorcontrib><title>Recent advancements in electrospinning design for tissue engineering applications: A review</title><title>Journal of biomedical materials research. Part A</title><addtitle>J Biomed Mater Res A</addtitle><description>Electrospinning, a technique used to fabricate fibrous scaffolds, has gained popularity in recent years as a method to produce tissue engineered grafts with architectural similarities to the extracellular matrix. Beyond its versatility in material selection, electrospinning also provides many tools to tune the fiber morphology and scaffold geometry. Recent efforts have focused on extending the capabilities of electrospinning to produce scaffolds that better recapitulate tissue properties and enhance regeneration. This review highlights these advancements by providing an overview of the processing variables and setups used to modulate scaffold architecture, discussing strategies to improve cellular infiltration and guide cell behavior, and providing a summary of electrospinning applications in tissue engineering. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2892–2905, 2017.</description><subject>Animals</subject><subject>Biocompatible Materials - chemistry</subject><subject>Cell Movement</subject><subject>cell‐material interactions</subject><subject>Design engineering</subject><subject>Electrochemical Techniques - instrumentation</subject><subject>Electrochemical Techniques - methods</subject><subject>Electrospinning</subject><subject>Extracellular matrix</subject><subject>fiber scaffold</subject><subject>Grafts</subject><subject>Humans</subject><subject>Infiltration</subject><subject>Materials selection</subject><subject>Mathematical morphology</subject><subject>Porosity</subject><subject>Regeneration</subject><subject>Scaffolds</subject><subject>Tissue engineering</subject><subject>Tissue Engineering - instrumentation</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds - chemistry</subject><issn>1549-3296</issn><issn>1552-4965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90M1P2zAYBnALgaB0nLhPlnZBmlL8mTi7FTTYENOkCU4cLMd5U7lKnMxOWvHf41LYYQcu9iv5p0d-H4TOKVlQQtjluuoWZsFzysQBmlEpWSbKXB7uZlFmnJX5CTqNcZ1wTiQ7RidMSZlLSWfo6Q9Y8CM29cZ4C12aI3YeQwt2DH0cnPfOr3AN0a08bvqARxfjBBj8ynmAsHs1w9A6a0bX-_gNL3GAjYPtJ3TUmDbC2ds9R4833x-uf2T3v29_Xi_vM8vLQmRMMWHBVI0yJVdE1FBLqmxBas6pAFCUg60YyYUo6oIQq1TdFBWpckXSsoLP0cU-dwj93wniqDsXLbSt8dBPUdOS8FIIImiiX_6j634KPv0uKc4UUelI6ute2dRADNDoIbjOhGdNid51rlPn2ujXzpP-_JY5VR3U_-x7yQmwPdi6Fp4_ytJ3V7-W-9QXAayMPA</recordid><startdate>201710</startdate><enddate>201710</enddate><creator>Kishan, Alysha P.</creator><creator>Cosgriff‐Hernandez, Elizabeth M.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201710</creationdate><title>Recent advancements in electrospinning design for tissue engineering applications: A review</title><author>Kishan, Alysha P. ; Cosgriff‐Hernandez, Elizabeth M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3974-2824ceabf8a93804ded518c70d3314ee813ecb206447d700c88df7b0b68055243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Biocompatible Materials - chemistry</topic><topic>Cell Movement</topic><topic>cell‐material interactions</topic><topic>Design engineering</topic><topic>Electrochemical Techniques - instrumentation</topic><topic>Electrochemical Techniques - methods</topic><topic>Electrospinning</topic><topic>Extracellular matrix</topic><topic>fiber scaffold</topic><topic>Grafts</topic><topic>Humans</topic><topic>Infiltration</topic><topic>Materials selection</topic><topic>Mathematical morphology</topic><topic>Porosity</topic><topic>Regeneration</topic><topic>Scaffolds</topic><topic>Tissue engineering</topic><topic>Tissue Engineering - instrumentation</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kishan, Alysha P.</creatorcontrib><creatorcontrib>Cosgriff‐Hernandez, Elizabeth M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kishan, Alysha P.</au><au>Cosgriff‐Hernandez, Elizabeth M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recent advancements in electrospinning design for tissue engineering applications: A review</atitle><jtitle>Journal of biomedical materials research. Part A</jtitle><addtitle>J Biomed Mater Res A</addtitle><date>2017-10</date><risdate>2017</risdate><volume>105</volume><issue>10</issue><spage>2892</spage><epage>2905</epage><pages>2892-2905</pages><issn>1549-3296</issn><eissn>1552-4965</eissn><abstract>Electrospinning, a technique used to fabricate fibrous scaffolds, has gained popularity in recent years as a method to produce tissue engineered grafts with architectural similarities to the extracellular matrix. Beyond its versatility in material selection, electrospinning also provides many tools to tune the fiber morphology and scaffold geometry. Recent efforts have focused on extending the capabilities of electrospinning to produce scaffolds that better recapitulate tissue properties and enhance regeneration. This review highlights these advancements by providing an overview of the processing variables and setups used to modulate scaffold architecture, discussing strategies to improve cellular infiltration and guide cell behavior, and providing a summary of electrospinning applications in tissue engineering. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2892–2905, 2017.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28556551</pmid><doi>10.1002/jbm.a.36124</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1549-3296
ispartof Journal of biomedical materials research. Part A, 2017-10, Vol.105 (10), p.2892-2905
issn 1549-3296
1552-4965
language eng
recordid cdi_proquest_miscellaneous_1903944041
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animals
Biocompatible Materials - chemistry
Cell Movement
cell‐material interactions
Design engineering
Electrochemical Techniques - instrumentation
Electrochemical Techniques - methods
Electrospinning
Extracellular matrix
fiber scaffold
Grafts
Humans
Infiltration
Materials selection
Mathematical morphology
Porosity
Regeneration
Scaffolds
Tissue engineering
Tissue Engineering - instrumentation
Tissue Engineering - methods
Tissue Scaffolds - chemistry
title Recent advancements in electrospinning design for tissue engineering applications: A review
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T08%3A16%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recent%20advancements%20in%20electrospinning%20design%20for%20tissue%20engineering%20applications:%20A%20review&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20A&rft.au=Kishan,%20Alysha%20P.&rft.date=2017-10&rft.volume=105&rft.issue=10&rft.spage=2892&rft.epage=2905&rft.pages=2892-2905&rft.issn=1549-3296&rft.eissn=1552-4965&rft_id=info:doi/10.1002/jbm.a.36124&rft_dat=%3Cproquest_cross%3E1932808328%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1932808328&rft_id=info:pmid/28556551&rfr_iscdi=true