Recent advancements in electrospinning design for tissue engineering applications: A review
Electrospinning, a technique used to fabricate fibrous scaffolds, has gained popularity in recent years as a method to produce tissue engineered grafts with architectural similarities to the extracellular matrix. Beyond its versatility in material selection, electrospinning also provides many tools...
Gespeichert in:
Veröffentlicht in: | Journal of biomedical materials research. Part A 2017-10, Vol.105 (10), p.2892-2905 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2905 |
---|---|
container_issue | 10 |
container_start_page | 2892 |
container_title | Journal of biomedical materials research. Part A |
container_volume | 105 |
creator | Kishan, Alysha P. Cosgriff‐Hernandez, Elizabeth M. |
description | Electrospinning, a technique used to fabricate fibrous scaffolds, has gained popularity in recent years as a method to produce tissue engineered grafts with architectural similarities to the extracellular matrix. Beyond its versatility in material selection, electrospinning also provides many tools to tune the fiber morphology and scaffold geometry. Recent efforts have focused on extending the capabilities of electrospinning to produce scaffolds that better recapitulate tissue properties and enhance regeneration. This review highlights these advancements by providing an overview of the processing variables and setups used to modulate scaffold architecture, discussing strategies to improve cellular infiltration and guide cell behavior, and providing a summary of electrospinning applications in tissue engineering. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2892–2905, 2017. |
doi_str_mv | 10.1002/jbm.a.36124 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1903944041</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1932808328</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3974-2824ceabf8a93804ded518c70d3314ee813ecb206447d700c88df7b0b68055243</originalsourceid><addsrcrecordid>eNp90M1P2zAYBnALgaB0nLhPlnZBmlL8mTi7FTTYENOkCU4cLMd5U7lKnMxOWvHf41LYYQcu9iv5p0d-H4TOKVlQQtjluuoWZsFzysQBmlEpWSbKXB7uZlFmnJX5CTqNcZ1wTiQ7RidMSZlLSWfo6Q9Y8CM29cZ4C12aI3YeQwt2DH0cnPfOr3AN0a08bvqARxfjBBj8ynmAsHs1w9A6a0bX-_gNL3GAjYPtJ3TUmDbC2ds9R4833x-uf2T3v29_Xi_vM8vLQmRMMWHBVI0yJVdE1FBLqmxBas6pAFCUg60YyYUo6oIQq1TdFBWpckXSsoLP0cU-dwj93wniqDsXLbSt8dBPUdOS8FIIImiiX_6j634KPv0uKc4UUelI6ute2dRADNDoIbjOhGdNid51rlPn2ujXzpP-_JY5VR3U_-x7yQmwPdi6Fp4_ytJ3V7-W-9QXAayMPA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1932808328</pqid></control><display><type>article</type><title>Recent advancements in electrospinning design for tissue engineering applications: A review</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kishan, Alysha P. ; Cosgriff‐Hernandez, Elizabeth M.</creator><creatorcontrib>Kishan, Alysha P. ; Cosgriff‐Hernandez, Elizabeth M.</creatorcontrib><description>Electrospinning, a technique used to fabricate fibrous scaffolds, has gained popularity in recent years as a method to produce tissue engineered grafts with architectural similarities to the extracellular matrix. Beyond its versatility in material selection, electrospinning also provides many tools to tune the fiber morphology and scaffold geometry. Recent efforts have focused on extending the capabilities of electrospinning to produce scaffolds that better recapitulate tissue properties and enhance regeneration. This review highlights these advancements by providing an overview of the processing variables and setups used to modulate scaffold architecture, discussing strategies to improve cellular infiltration and guide cell behavior, and providing a summary of electrospinning applications in tissue engineering. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2892–2905, 2017.</description><identifier>ISSN: 1549-3296</identifier><identifier>EISSN: 1552-4965</identifier><identifier>DOI: 10.1002/jbm.a.36124</identifier><identifier>PMID: 28556551</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Animals ; Biocompatible Materials - chemistry ; Cell Movement ; cell‐material interactions ; Design engineering ; Electrochemical Techniques - instrumentation ; Electrochemical Techniques - methods ; Electrospinning ; Extracellular matrix ; fiber scaffold ; Grafts ; Humans ; Infiltration ; Materials selection ; Mathematical morphology ; Porosity ; Regeneration ; Scaffolds ; Tissue engineering ; Tissue Engineering - instrumentation ; Tissue Engineering - methods ; Tissue Scaffolds - chemistry</subject><ispartof>Journal of biomedical materials research. Part A, 2017-10, Vol.105 (10), p.2892-2905</ispartof><rights>2017 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3974-2824ceabf8a93804ded518c70d3314ee813ecb206447d700c88df7b0b68055243</citedby><cites>FETCH-LOGICAL-c3974-2824ceabf8a93804ded518c70d3314ee813ecb206447d700c88df7b0b68055243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.a.36124$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.a.36124$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28556551$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kishan, Alysha P.</creatorcontrib><creatorcontrib>Cosgriff‐Hernandez, Elizabeth M.</creatorcontrib><title>Recent advancements in electrospinning design for tissue engineering applications: A review</title><title>Journal of biomedical materials research. Part A</title><addtitle>J Biomed Mater Res A</addtitle><description>Electrospinning, a technique used to fabricate fibrous scaffolds, has gained popularity in recent years as a method to produce tissue engineered grafts with architectural similarities to the extracellular matrix. Beyond its versatility in material selection, electrospinning also provides many tools to tune the fiber morphology and scaffold geometry. Recent efforts have focused on extending the capabilities of electrospinning to produce scaffolds that better recapitulate tissue properties and enhance regeneration. This review highlights these advancements by providing an overview of the processing variables and setups used to modulate scaffold architecture, discussing strategies to improve cellular infiltration and guide cell behavior, and providing a summary of electrospinning applications in tissue engineering. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2892–2905, 2017.</description><subject>Animals</subject><subject>Biocompatible Materials - chemistry</subject><subject>Cell Movement</subject><subject>cell‐material interactions</subject><subject>Design engineering</subject><subject>Electrochemical Techniques - instrumentation</subject><subject>Electrochemical Techniques - methods</subject><subject>Electrospinning</subject><subject>Extracellular matrix</subject><subject>fiber scaffold</subject><subject>Grafts</subject><subject>Humans</subject><subject>Infiltration</subject><subject>Materials selection</subject><subject>Mathematical morphology</subject><subject>Porosity</subject><subject>Regeneration</subject><subject>Scaffolds</subject><subject>Tissue engineering</subject><subject>Tissue Engineering - instrumentation</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds - chemistry</subject><issn>1549-3296</issn><issn>1552-4965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90M1P2zAYBnALgaB0nLhPlnZBmlL8mTi7FTTYENOkCU4cLMd5U7lKnMxOWvHf41LYYQcu9iv5p0d-H4TOKVlQQtjluuoWZsFzysQBmlEpWSbKXB7uZlFmnJX5CTqNcZ1wTiQ7RidMSZlLSWfo6Q9Y8CM29cZ4C12aI3YeQwt2DH0cnPfOr3AN0a08bvqARxfjBBj8ynmAsHs1w9A6a0bX-_gNL3GAjYPtJ3TUmDbC2ds9R4833x-uf2T3v29_Xi_vM8vLQmRMMWHBVI0yJVdE1FBLqmxBas6pAFCUg60YyYUo6oIQq1TdFBWpckXSsoLP0cU-dwj93wniqDsXLbSt8dBPUdOS8FIIImiiX_6j634KPv0uKc4UUelI6ute2dRADNDoIbjOhGdNid51rlPn2ujXzpP-_JY5VR3U_-x7yQmwPdi6Fp4_ytJ3V7-W-9QXAayMPA</recordid><startdate>201710</startdate><enddate>201710</enddate><creator>Kishan, Alysha P.</creator><creator>Cosgriff‐Hernandez, Elizabeth M.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201710</creationdate><title>Recent advancements in electrospinning design for tissue engineering applications: A review</title><author>Kishan, Alysha P. ; Cosgriff‐Hernandez, Elizabeth M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3974-2824ceabf8a93804ded518c70d3314ee813ecb206447d700c88df7b0b68055243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Biocompatible Materials - chemistry</topic><topic>Cell Movement</topic><topic>cell‐material interactions</topic><topic>Design engineering</topic><topic>Electrochemical Techniques - instrumentation</topic><topic>Electrochemical Techniques - methods</topic><topic>Electrospinning</topic><topic>Extracellular matrix</topic><topic>fiber scaffold</topic><topic>Grafts</topic><topic>Humans</topic><topic>Infiltration</topic><topic>Materials selection</topic><topic>Mathematical morphology</topic><topic>Porosity</topic><topic>Regeneration</topic><topic>Scaffolds</topic><topic>Tissue engineering</topic><topic>Tissue Engineering - instrumentation</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kishan, Alysha P.</creatorcontrib><creatorcontrib>Cosgriff‐Hernandez, Elizabeth M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kishan, Alysha P.</au><au>Cosgriff‐Hernandez, Elizabeth M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recent advancements in electrospinning design for tissue engineering applications: A review</atitle><jtitle>Journal of biomedical materials research. Part A</jtitle><addtitle>J Biomed Mater Res A</addtitle><date>2017-10</date><risdate>2017</risdate><volume>105</volume><issue>10</issue><spage>2892</spage><epage>2905</epage><pages>2892-2905</pages><issn>1549-3296</issn><eissn>1552-4965</eissn><abstract>Electrospinning, a technique used to fabricate fibrous scaffolds, has gained popularity in recent years as a method to produce tissue engineered grafts with architectural similarities to the extracellular matrix. Beyond its versatility in material selection, electrospinning also provides many tools to tune the fiber morphology and scaffold geometry. Recent efforts have focused on extending the capabilities of electrospinning to produce scaffolds that better recapitulate tissue properties and enhance regeneration. This review highlights these advancements by providing an overview of the processing variables and setups used to modulate scaffold architecture, discussing strategies to improve cellular infiltration and guide cell behavior, and providing a summary of electrospinning applications in tissue engineering. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2892–2905, 2017.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28556551</pmid><doi>10.1002/jbm.a.36124</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-3296 |
ispartof | Journal of biomedical materials research. Part A, 2017-10, Vol.105 (10), p.2892-2905 |
issn | 1549-3296 1552-4965 |
language | eng |
recordid | cdi_proquest_miscellaneous_1903944041 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Animals Biocompatible Materials - chemistry Cell Movement cell‐material interactions Design engineering Electrochemical Techniques - instrumentation Electrochemical Techniques - methods Electrospinning Extracellular matrix fiber scaffold Grafts Humans Infiltration Materials selection Mathematical morphology Porosity Regeneration Scaffolds Tissue engineering Tissue Engineering - instrumentation Tissue Engineering - methods Tissue Scaffolds - chemistry |
title | Recent advancements in electrospinning design for tissue engineering applications: A review |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T08%3A16%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recent%20advancements%20in%20electrospinning%20design%20for%20tissue%20engineering%20applications:%20A%20review&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20A&rft.au=Kishan,%20Alysha%20P.&rft.date=2017-10&rft.volume=105&rft.issue=10&rft.spage=2892&rft.epage=2905&rft.pages=2892-2905&rft.issn=1549-3296&rft.eissn=1552-4965&rft_id=info:doi/10.1002/jbm.a.36124&rft_dat=%3Cproquest_cross%3E1932808328%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1932808328&rft_id=info:pmid/28556551&rfr_iscdi=true |