Direct Imaging of Protein Stability and Folding Kinetics in Hydrogels

We apply fast relaxation imaging (FReI) as a novel technique for investigating the folding stability and dynamics of proteins within polyacrylamide hydrogels, which have diverse and widespread uses in biotechnology. FReI detects protein unfolding in situ by imaging changes in fluorescence resonance...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2017-07, Vol.9 (26), p.21606-21617
Hauptverfasser: Kisley, Lydia, Serrano, Kali A, Guin, Drishti, Kong, Xinyu, Gruebele, Martin, Leckband, Deborah E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21617
container_issue 26
container_start_page 21606
container_title ACS applied materials & interfaces
container_volume 9
creator Kisley, Lydia
Serrano, Kali A
Guin, Drishti
Kong, Xinyu
Gruebele, Martin
Leckband, Deborah E
description We apply fast relaxation imaging (FReI) as a novel technique for investigating the folding stability and dynamics of proteins within polyacrylamide hydrogels, which have diverse and widespread uses in biotechnology. FReI detects protein unfolding in situ by imaging changes in fluorescence resonance energy transfer (FRET) after temperature jump perturbations. Unlike bulk measurements, diffraction-limited epifluorescence imaging combined with fast temperature perturbations reveals the impact of local environment effects on protein–biomaterial compatibility. Our experiments investigated a crowding sensor protein (CrH2) and phosphoglycerate kinase (PGK), which undergoes cooperative unfolding. The crowding sensor quantifies the confinement effect of the cross-linked hydrogel: the 4% polyacrylamide hydrogel is similar to aqueous solution (no confinement), while the 10% hydrogel is strongly confining. FRAP measurements and protein concentration gradients in the 4% and 10% hydrogels further support this observation. PGK reveals that noncovalent interactions of the protein with the polymer surface are more important than confinement for determining protein properties in the gel: the mere presence of hydrogel increases protein stability, speeds up folding relaxation, and promotes irreversible binding to the polymer even at the solution–gel interface, whereas the difference between the 4% and the 10% hydrogels is negligible despite their large difference in confinement. The imaging capabilities of FReI, demonstrated to be diffraction limited, further revealed spatially homogeneous protein unfolding across the hydrogels at 500 nm length scales and revealed differences in protein properties at the gel–solution boundary.
doi_str_mv 10.1021/acsami.7b01371
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1903439091</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1903439091</sourcerecordid><originalsourceid>FETCH-LOGICAL-a396t-d2ffe8422ebed99ab692bca4e2ba9ac11fff94dc0f3dda59ca5e76efa1e0245b3</originalsourceid><addsrcrecordid>eNp1kD1PwzAURS0EoqWwMqKMCCnFdpykHhG0tKISSMBs-eO5cpXExU6G_ntSpXRjenc490rvIHRL8JRgSh6ljrJ201JhkpXkDI0JZyyd0ZyenzJjI3QV4xbjIqM4v0QjOsvzrMTFGM1fXADdJqtablyzSbxNPoJvwTXJZyuVq1y7T2RjkoWvzAF4cw20TsekJ5Z7E_wGqniNLqysItwc7wR9L-Zfz8t0_f66en5apzLjRZsaai3MGKWgwHAuVcGp0pIBVZJLTYi1ljOjsc2MkTnXMoeyACsJYMpylU3Q_bC7C_6ng9iK2kUNVSUb8F0UhOOMZRxz0qPTAdXBxxjAil1wtQx7QbA4qBODOnFU1xfujtudqsGc8D9XPfAwAH1RbH0Xmv7V_9Z-AWPXegY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1903439091</pqid></control><display><type>article</type><title>Direct Imaging of Protein Stability and Folding Kinetics in Hydrogels</title><source>MEDLINE</source><source>American Chemical Society Publications</source><creator>Kisley, Lydia ; Serrano, Kali A ; Guin, Drishti ; Kong, Xinyu ; Gruebele, Martin ; Leckband, Deborah E</creator><creatorcontrib>Kisley, Lydia ; Serrano, Kali A ; Guin, Drishti ; Kong, Xinyu ; Gruebele, Martin ; Leckband, Deborah E</creatorcontrib><description>We apply fast relaxation imaging (FReI) as a novel technique for investigating the folding stability and dynamics of proteins within polyacrylamide hydrogels, which have diverse and widespread uses in biotechnology. FReI detects protein unfolding in situ by imaging changes in fluorescence resonance energy transfer (FRET) after temperature jump perturbations. Unlike bulk measurements, diffraction-limited epifluorescence imaging combined with fast temperature perturbations reveals the impact of local environment effects on protein–biomaterial compatibility. Our experiments investigated a crowding sensor protein (CrH2) and phosphoglycerate kinase (PGK), which undergoes cooperative unfolding. The crowding sensor quantifies the confinement effect of the cross-linked hydrogel: the 4% polyacrylamide hydrogel is similar to aqueous solution (no confinement), while the 10% hydrogel is strongly confining. FRAP measurements and protein concentration gradients in the 4% and 10% hydrogels further support this observation. PGK reveals that noncovalent interactions of the protein with the polymer surface are more important than confinement for determining protein properties in the gel: the mere presence of hydrogel increases protein stability, speeds up folding relaxation, and promotes irreversible binding to the polymer even at the solution–gel interface, whereas the difference between the 4% and the 10% hydrogels is negligible despite their large difference in confinement. The imaging capabilities of FReI, demonstrated to be diffraction limited, further revealed spatially homogeneous protein unfolding across the hydrogels at 500 nm length scales and revealed differences in protein properties at the gel–solution boundary.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.7b01371</identifier><identifier>PMID: 28553706</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Fluorescence Resonance Energy Transfer ; Hydrogels - chemistry ; Kinetics ; Phosphoglycerate Kinase ; Protein Folding ; Protein Stability</subject><ispartof>ACS applied materials &amp; interfaces, 2017-07, Vol.9 (26), p.21606-21617</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a396t-d2ffe8422ebed99ab692bca4e2ba9ac11fff94dc0f3dda59ca5e76efa1e0245b3</citedby><cites>FETCH-LOGICAL-a396t-d2ffe8422ebed99ab692bca4e2ba9ac11fff94dc0f3dda59ca5e76efa1e0245b3</cites><orcidid>0000-0001-9291-8123 ; 0000-0002-7557-766X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.7b01371$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.7b01371$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2756,27067,27915,27916,56729,56779</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28553706$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kisley, Lydia</creatorcontrib><creatorcontrib>Serrano, Kali A</creatorcontrib><creatorcontrib>Guin, Drishti</creatorcontrib><creatorcontrib>Kong, Xinyu</creatorcontrib><creatorcontrib>Gruebele, Martin</creatorcontrib><creatorcontrib>Leckband, Deborah E</creatorcontrib><title>Direct Imaging of Protein Stability and Folding Kinetics in Hydrogels</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>We apply fast relaxation imaging (FReI) as a novel technique for investigating the folding stability and dynamics of proteins within polyacrylamide hydrogels, which have diverse and widespread uses in biotechnology. FReI detects protein unfolding in situ by imaging changes in fluorescence resonance energy transfer (FRET) after temperature jump perturbations. Unlike bulk measurements, diffraction-limited epifluorescence imaging combined with fast temperature perturbations reveals the impact of local environment effects on protein–biomaterial compatibility. Our experiments investigated a crowding sensor protein (CrH2) and phosphoglycerate kinase (PGK), which undergoes cooperative unfolding. The crowding sensor quantifies the confinement effect of the cross-linked hydrogel: the 4% polyacrylamide hydrogel is similar to aqueous solution (no confinement), while the 10% hydrogel is strongly confining. FRAP measurements and protein concentration gradients in the 4% and 10% hydrogels further support this observation. PGK reveals that noncovalent interactions of the protein with the polymer surface are more important than confinement for determining protein properties in the gel: the mere presence of hydrogel increases protein stability, speeds up folding relaxation, and promotes irreversible binding to the polymer even at the solution–gel interface, whereas the difference between the 4% and the 10% hydrogels is negligible despite their large difference in confinement. The imaging capabilities of FReI, demonstrated to be diffraction limited, further revealed spatially homogeneous protein unfolding across the hydrogels at 500 nm length scales and revealed differences in protein properties at the gel–solution boundary.</description><subject>Fluorescence Resonance Energy Transfer</subject><subject>Hydrogels - chemistry</subject><subject>Kinetics</subject><subject>Phosphoglycerate Kinase</subject><subject>Protein Folding</subject><subject>Protein Stability</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kD1PwzAURS0EoqWwMqKMCCnFdpykHhG0tKISSMBs-eO5cpXExU6G_ntSpXRjenc490rvIHRL8JRgSh6ljrJ201JhkpXkDI0JZyyd0ZyenzJjI3QV4xbjIqM4v0QjOsvzrMTFGM1fXADdJqtablyzSbxNPoJvwTXJZyuVq1y7T2RjkoWvzAF4cw20TsekJ5Z7E_wGqniNLqysItwc7wR9L-Zfz8t0_f66en5apzLjRZsaai3MGKWgwHAuVcGp0pIBVZJLTYi1ljOjsc2MkTnXMoeyACsJYMpylU3Q_bC7C_6ng9iK2kUNVSUb8F0UhOOMZRxz0qPTAdXBxxjAil1wtQx7QbA4qBODOnFU1xfujtudqsGc8D9XPfAwAH1RbH0Xmv7V_9Z-AWPXegY</recordid><startdate>20170705</startdate><enddate>20170705</enddate><creator>Kisley, Lydia</creator><creator>Serrano, Kali A</creator><creator>Guin, Drishti</creator><creator>Kong, Xinyu</creator><creator>Gruebele, Martin</creator><creator>Leckband, Deborah E</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9291-8123</orcidid><orcidid>https://orcid.org/0000-0002-7557-766X</orcidid></search><sort><creationdate>20170705</creationdate><title>Direct Imaging of Protein Stability and Folding Kinetics in Hydrogels</title><author>Kisley, Lydia ; Serrano, Kali A ; Guin, Drishti ; Kong, Xinyu ; Gruebele, Martin ; Leckband, Deborah E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a396t-d2ffe8422ebed99ab692bca4e2ba9ac11fff94dc0f3dda59ca5e76efa1e0245b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Fluorescence Resonance Energy Transfer</topic><topic>Hydrogels - chemistry</topic><topic>Kinetics</topic><topic>Phosphoglycerate Kinase</topic><topic>Protein Folding</topic><topic>Protein Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kisley, Lydia</creatorcontrib><creatorcontrib>Serrano, Kali A</creatorcontrib><creatorcontrib>Guin, Drishti</creatorcontrib><creatorcontrib>Kong, Xinyu</creatorcontrib><creatorcontrib>Gruebele, Martin</creatorcontrib><creatorcontrib>Leckband, Deborah E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kisley, Lydia</au><au>Serrano, Kali A</au><au>Guin, Drishti</au><au>Kong, Xinyu</au><au>Gruebele, Martin</au><au>Leckband, Deborah E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct Imaging of Protein Stability and Folding Kinetics in Hydrogels</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2017-07-05</date><risdate>2017</risdate><volume>9</volume><issue>26</issue><spage>21606</spage><epage>21617</epage><pages>21606-21617</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>We apply fast relaxation imaging (FReI) as a novel technique for investigating the folding stability and dynamics of proteins within polyacrylamide hydrogels, which have diverse and widespread uses in biotechnology. FReI detects protein unfolding in situ by imaging changes in fluorescence resonance energy transfer (FRET) after temperature jump perturbations. Unlike bulk measurements, diffraction-limited epifluorescence imaging combined with fast temperature perturbations reveals the impact of local environment effects on protein–biomaterial compatibility. Our experiments investigated a crowding sensor protein (CrH2) and phosphoglycerate kinase (PGK), which undergoes cooperative unfolding. The crowding sensor quantifies the confinement effect of the cross-linked hydrogel: the 4% polyacrylamide hydrogel is similar to aqueous solution (no confinement), while the 10% hydrogel is strongly confining. FRAP measurements and protein concentration gradients in the 4% and 10% hydrogels further support this observation. PGK reveals that noncovalent interactions of the protein with the polymer surface are more important than confinement for determining protein properties in the gel: the mere presence of hydrogel increases protein stability, speeds up folding relaxation, and promotes irreversible binding to the polymer even at the solution–gel interface, whereas the difference between the 4% and the 10% hydrogels is negligible despite their large difference in confinement. The imaging capabilities of FReI, demonstrated to be diffraction limited, further revealed spatially homogeneous protein unfolding across the hydrogels at 500 nm length scales and revealed differences in protein properties at the gel–solution boundary.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28553706</pmid><doi>10.1021/acsami.7b01371</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9291-8123</orcidid><orcidid>https://orcid.org/0000-0002-7557-766X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2017-07, Vol.9 (26), p.21606-21617
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_1903439091
source MEDLINE; American Chemical Society Publications
subjects Fluorescence Resonance Energy Transfer
Hydrogels - chemistry
Kinetics
Phosphoglycerate Kinase
Protein Folding
Protein Stability
title Direct Imaging of Protein Stability and Folding Kinetics in Hydrogels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T19%3A11%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20Imaging%20of%20Protein%20Stability%20and%20Folding%20Kinetics%20in%20Hydrogels&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Kisley,%20Lydia&rft.date=2017-07-05&rft.volume=9&rft.issue=26&rft.spage=21606&rft.epage=21617&rft.pages=21606-21617&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.7b01371&rft_dat=%3Cproquest_cross%3E1903439091%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1903439091&rft_id=info:pmid/28553706&rfr_iscdi=true