Nonredundant sparse feature extraction using autoencoders with receptive fields clustering
This paper proposes new techniques for data representation in the context of deep learning using agglomerative clustering. Existing autoencoder-based data representation techniques tend to produce a number of encoding and decoding receptive fields of layered autoencoders that are duplicative, thereb...
Gespeichert in:
Veröffentlicht in: | Neural networks 2017-09, Vol.93, p.99-109 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 109 |
---|---|
container_issue | |
container_start_page | 99 |
container_title | Neural networks |
container_volume | 93 |
creator | Ayinde, Babajide O. Zurada, Jacek M. |
description | This paper proposes new techniques for data representation in the context of deep learning using agglomerative clustering. Existing autoencoder-based data representation techniques tend to produce a number of encoding and decoding receptive fields of layered autoencoders that are duplicative, thereby leading to extraction of similar features, thus resulting in filtering redundancy. We propose a way to address this problem and show that such redundancy can be eliminated. This yields smaller networks and produces unique receptive fields that extract distinct features. It is also shown that autoencoders with nonnegativity constraints on weights are capable of extracting fewer redundant features than conventional sparse autoencoders. The concept is illustrated using conventional sparse autoencoder and nonnegativity-constrained autoencoders with MNIST digits recognition, NORB normalized-uniform object data and Yale face dataset. |
doi_str_mv | 10.1016/j.neunet.2017.04.012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1903437380</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893608017300928</els_id><sourcerecordid>1903437380</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-5fd7c2927c52ad60dd1320a40e20e296299bf5550609c7afe57bc5561fdb53783</originalsourceid><addsrcrecordid>eNp9kE1P3DAQhi3UCraUf4CqHHtJOnbi2L5UQgjaSggucOFiee0JeJV1tv6g8O9rtJRjpZHm8rzzah5CTil0FOj4bdMFLAFzx4CKDoYOKDsgKyqFapmQ7ANZgVR9O4KEI_IppQ0AjHLoD8kRk5wzDmpF7q-XENGV4EzITdqZmLCZ0OQSscHnHI3NfglNST48NKbkBYNdHMbU_PH5sYlocZf9Uw15nF1q7FxSxljpz-TjZOaEJ2_7mNxdXtye_2yvbn78Oj-7au0AMrd8csIyxYTlzLgRnKM9AzMAsjpqZEqtJ845jKCsMBNysbacj3Rya94L2R-Tr_u7u7j8Lpiy3vpkcZ5NwKUkTRX0Qy96CRUd9qiNS0oRJ72Lfmvii6agX63qjd5b1a9WNQy6Wq2xL28NZb1F9x76p7EC3_cA1j-fPEadrK-i0PkqKGu3-P83_AV16IxV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1903437380</pqid></control><display><type>article</type><title>Nonredundant sparse feature extraction using autoencoders with receptive fields clustering</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Ayinde, Babajide O. ; Zurada, Jacek M.</creator><creatorcontrib>Ayinde, Babajide O. ; Zurada, Jacek M.</creatorcontrib><description>This paper proposes new techniques for data representation in the context of deep learning using agglomerative clustering. Existing autoencoder-based data representation techniques tend to produce a number of encoding and decoding receptive fields of layered autoencoders that are duplicative, thereby leading to extraction of similar features, thus resulting in filtering redundancy. We propose a way to address this problem and show that such redundancy can be eliminated. This yields smaller networks and produces unique receptive fields that extract distinct features. It is also shown that autoencoders with nonnegativity constraints on weights are capable of extracting fewer redundant features than conventional sparse autoencoders. The concept is illustrated using conventional sparse autoencoder and nonnegativity-constrained autoencoders with MNIST digits recognition, NORB normalized-uniform object data and Yale face dataset.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/j.neunet.2017.04.012</identifier><identifier>PMID: 28552509</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Agglomerative clustering ; Autoencoder ; Cluster Analysis ; Databases, Factual ; Deep learning ; Filter clustering ; Information Storage and Retrieval - methods ; Learning ; Pattern Recognition, Automated - methods ; Receptive fields</subject><ispartof>Neural networks, 2017-09, Vol.93, p.99-109</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright © 2017 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-5fd7c2927c52ad60dd1320a40e20e296299bf5550609c7afe57bc5561fdb53783</citedby><cites>FETCH-LOGICAL-c408t-5fd7c2927c52ad60dd1320a40e20e296299bf5550609c7afe57bc5561fdb53783</cites><orcidid>0000-0001-7341-8799 ; 0000-0001-6622-534X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neunet.2017.04.012$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28552509$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ayinde, Babajide O.</creatorcontrib><creatorcontrib>Zurada, Jacek M.</creatorcontrib><title>Nonredundant sparse feature extraction using autoencoders with receptive fields clustering</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>This paper proposes new techniques for data representation in the context of deep learning using agglomerative clustering. Existing autoencoder-based data representation techniques tend to produce a number of encoding and decoding receptive fields of layered autoencoders that are duplicative, thereby leading to extraction of similar features, thus resulting in filtering redundancy. We propose a way to address this problem and show that such redundancy can be eliminated. This yields smaller networks and produces unique receptive fields that extract distinct features. It is also shown that autoencoders with nonnegativity constraints on weights are capable of extracting fewer redundant features than conventional sparse autoencoders. The concept is illustrated using conventional sparse autoencoder and nonnegativity-constrained autoencoders with MNIST digits recognition, NORB normalized-uniform object data and Yale face dataset.</description><subject>Agglomerative clustering</subject><subject>Autoencoder</subject><subject>Cluster Analysis</subject><subject>Databases, Factual</subject><subject>Deep learning</subject><subject>Filter clustering</subject><subject>Information Storage and Retrieval - methods</subject><subject>Learning</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Receptive fields</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1P3DAQhi3UCraUf4CqHHtJOnbi2L5UQgjaSggucOFiee0JeJV1tv6g8O9rtJRjpZHm8rzzah5CTil0FOj4bdMFLAFzx4CKDoYOKDsgKyqFapmQ7ANZgVR9O4KEI_IppQ0AjHLoD8kRk5wzDmpF7q-XENGV4EzITdqZmLCZ0OQSscHnHI3NfglNST48NKbkBYNdHMbU_PH5sYlocZf9Uw15nF1q7FxSxljpz-TjZOaEJ2_7mNxdXtye_2yvbn78Oj-7au0AMrd8csIyxYTlzLgRnKM9AzMAsjpqZEqtJ845jKCsMBNysbacj3Rya94L2R-Tr_u7u7j8Lpiy3vpkcZ5NwKUkTRX0Qy96CRUd9qiNS0oRJ72Lfmvii6agX63qjd5b1a9WNQy6Wq2xL28NZb1F9x76p7EC3_cA1j-fPEadrK-i0PkqKGu3-P83_AV16IxV</recordid><startdate>201709</startdate><enddate>201709</enddate><creator>Ayinde, Babajide O.</creator><creator>Zurada, Jacek M.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7341-8799</orcidid><orcidid>https://orcid.org/0000-0001-6622-534X</orcidid></search><sort><creationdate>201709</creationdate><title>Nonredundant sparse feature extraction using autoencoders with receptive fields clustering</title><author>Ayinde, Babajide O. ; Zurada, Jacek M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-5fd7c2927c52ad60dd1320a40e20e296299bf5550609c7afe57bc5561fdb53783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Agglomerative clustering</topic><topic>Autoencoder</topic><topic>Cluster Analysis</topic><topic>Databases, Factual</topic><topic>Deep learning</topic><topic>Filter clustering</topic><topic>Information Storage and Retrieval - methods</topic><topic>Learning</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Receptive fields</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ayinde, Babajide O.</creatorcontrib><creatorcontrib>Zurada, Jacek M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ayinde, Babajide O.</au><au>Zurada, Jacek M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonredundant sparse feature extraction using autoencoders with receptive fields clustering</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>2017-09</date><risdate>2017</risdate><volume>93</volume><spage>99</spage><epage>109</epage><pages>99-109</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>This paper proposes new techniques for data representation in the context of deep learning using agglomerative clustering. Existing autoencoder-based data representation techniques tend to produce a number of encoding and decoding receptive fields of layered autoencoders that are duplicative, thereby leading to extraction of similar features, thus resulting in filtering redundancy. We propose a way to address this problem and show that such redundancy can be eliminated. This yields smaller networks and produces unique receptive fields that extract distinct features. It is also shown that autoencoders with nonnegativity constraints on weights are capable of extracting fewer redundant features than conventional sparse autoencoders. The concept is illustrated using conventional sparse autoencoder and nonnegativity-constrained autoencoders with MNIST digits recognition, NORB normalized-uniform object data and Yale face dataset.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>28552509</pmid><doi>10.1016/j.neunet.2017.04.012</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7341-8799</orcidid><orcidid>https://orcid.org/0000-0001-6622-534X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-6080 |
ispartof | Neural networks, 2017-09, Vol.93, p.99-109 |
issn | 0893-6080 1879-2782 |
language | eng |
recordid | cdi_proquest_miscellaneous_1903437380 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Agglomerative clustering Autoencoder Cluster Analysis Databases, Factual Deep learning Filter clustering Information Storage and Retrieval - methods Learning Pattern Recognition, Automated - methods Receptive fields |
title | Nonredundant sparse feature extraction using autoencoders with receptive fields clustering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A22%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonredundant%20sparse%20feature%20extraction%20using%20autoencoders%20with%20receptive%20fields%20clustering&rft.jtitle=Neural%20networks&rft.au=Ayinde,%20Babajide%20O.&rft.date=2017-09&rft.volume=93&rft.spage=99&rft.epage=109&rft.pages=99-109&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/j.neunet.2017.04.012&rft_dat=%3Cproquest_cross%3E1903437380%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1903437380&rft_id=info:pmid/28552509&rft_els_id=S0893608017300928&rfr_iscdi=true |