Artificial Intelligence in Precision Cardiovascular Medicine

Abstract Artificial intelligence (AI) is a field of computer science that aims to mimic human thought processes, learning capacity, and knowledge storage. AI techniques have been applied in cardiovascular medicine to explore novel genotypes and phenotypes in existing diseases, improve the quality of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American College of Cardiology 2017-05, Vol.69 (21), p.2657-2664
Hauptverfasser: Krittanawong, Chayakrit, MD, Zhang, HongJu, PhD, Wang, Zhen, PhD, Aydar, Mehmet, PhD, Kitai, Takeshi, MD, PhD
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2664
container_issue 21
container_start_page 2657
container_title Journal of the American College of Cardiology
container_volume 69
creator Krittanawong, Chayakrit, MD
Zhang, HongJu, PhD
Wang, Zhen, PhD
Aydar, Mehmet, PhD
Kitai, Takeshi, MD, PhD
description Abstract Artificial intelligence (AI) is a field of computer science that aims to mimic human thought processes, learning capacity, and knowledge storage. AI techniques have been applied in cardiovascular medicine to explore novel genotypes and phenotypes in existing diseases, improve the quality of patient care, enable cost-effectiveness, and reduce readmission and mortality rates. Over the past decade, several machine-learning techniques have been used for cardiovascular disease diagnosis and prediction. Each problem requires some degree of understanding of the problem, in terms of cardiovascular medicine and statistics, to apply the optimal machine-learning algorithm. In the near future, AI will result in a paradigm shift toward precision cardiovascular medicine. The potential of AI in cardiovascular medicine is tremendous; however, ignorance of the challenges may overshadow its potential clinical impact. This paper gives a glimpse of AI’s application in cardiovascular clinical care and discusses its potential role in facilitating precision cardiovascular medicine.
doi_str_mv 10.1016/j.jacc.2017.03.571
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1903169929</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0735109717368456</els_id><sourcerecordid>1903169929</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-3bf6fbcc58fb6aaf9dc78469bfb089e49ee834ef0dac113dd55c0176b032b58f3</originalsourceid><addsrcrecordid>eNp9kc1u1TAQRi1ERS-FF2CBrsSGTcI4jp1YgkrVFT-VWoEErC1nPEYOuUmxk0p9mz4LT4ajW0DqoqvZnO_TzBnGXnAoOXD1pi97i1hWwJsSRCkb_ohtuJRtIaRuHrMNNEIWHHRzzJ6m1AOAarl-wo6rVtZS1bBh787iHHzAYIft-TjTMIQfNCJtw7j9EglDCtP4-3ZnowvTtU24DDZuL8nlyEjP2JG3Q6Lnd_OEff_w_tvuU3Hx-eP57uyiwFrouRCdV75DlK3vlLVeO2zaWunOd9BqqjVRK2ry4CxyLpyTEvNRqgNRdTkkTtjrQ-9VnH4tlGazDwnzsnakaUmGaxBcaV3pjL66h_bTEse83UpVtVaKV5mqDhTGKaVI3lzFsLfxxnAwq1zTm1WuWeUaECbLzaGXd9VLtyf3L_LXZgbeHgDKLq4DRZMwrDZdyCpn46bwcP_pvTgOYQxoh590Q-n_HSZVBszX9b3rd3kjVJs3EH8AqeKgHQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1902496612</pqid></control><display><type>article</type><title>Artificial Intelligence in Precision Cardiovascular Medicine</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via ScienceDirect (Elsevier)</source><source>Alma/SFX Local Collection</source><creator>Krittanawong, Chayakrit, MD ; Zhang, HongJu, PhD ; Wang, Zhen, PhD ; Aydar, Mehmet, PhD ; Kitai, Takeshi, MD, PhD</creator><creatorcontrib>Krittanawong, Chayakrit, MD ; Zhang, HongJu, PhD ; Wang, Zhen, PhD ; Aydar, Mehmet, PhD ; Kitai, Takeshi, MD, PhD</creatorcontrib><description>Abstract Artificial intelligence (AI) is a field of computer science that aims to mimic human thought processes, learning capacity, and knowledge storage. AI techniques have been applied in cardiovascular medicine to explore novel genotypes and phenotypes in existing diseases, improve the quality of patient care, enable cost-effectiveness, and reduce readmission and mortality rates. Over the past decade, several machine-learning techniques have been used for cardiovascular disease diagnosis and prediction. Each problem requires some degree of understanding of the problem, in terms of cardiovascular medicine and statistics, to apply the optimal machine-learning algorithm. In the near future, AI will result in a paradigm shift toward precision cardiovascular medicine. The potential of AI in cardiovascular medicine is tremendous; however, ignorance of the challenges may overshadow its potential clinical impact. This paper gives a glimpse of AI’s application in cardiovascular clinical care and discusses its potential role in facilitating precision cardiovascular medicine.</description><identifier>ISSN: 0735-1097</identifier><identifier>EISSN: 1558-3597</identifier><identifier>DOI: 10.1016/j.jacc.2017.03.571</identifier><identifier>PMID: 28545640</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Agents (artificial intelligence) ; Air pollution ; Algorithms ; Alzheimer's disease ; Analytics ; Anticoagulants ; Arrhythmia ; Arteriosclerosis ; Artificial Intelligence ; Attitude control ; Automation ; big data ; Bleeding ; Brain ; Cameras ; Cardiac arrhythmia ; Cardiology ; Cardiology - methods ; Cardiomyopathy ; Cardiovascular ; Cardiovascular disease ; Cardiovascular diseases ; Classification ; cognitive computing ; Computation ; Computer programs ; Coronary artery disease ; Data processing ; Deep learning ; Diabetes mellitus ; Diagnosis ; Failure analysis ; Fuzzy systems ; Gastrointestinal tract ; Genotypes ; Hazards ; Humans ; Hypertension ; Internal Medicine ; Intervention ; Learning algorithms ; Lungs ; Machine Learning ; Media ; Medical personnel ; Medicine ; Minority &amp; ethnic groups ; Mortality ; Myocardial infarction ; Neural networks ; Neuroimaging ; Optimization ; pH effects ; Pharmacology ; Precision medicine ; Precision Medicine - methods ; Prevention ; Quantitation ; Risk factors ; Robots ; Silicon ; Social networks ; Speech ; Statins ; Statistics ; Surgery ; Survival ; Ventricle ; Visual perception</subject><ispartof>Journal of the American College of Cardiology, 2017-05, Vol.69 (21), p.2657-2664</ispartof><rights>American College of Cardiology Foundation</rights><rights>2017 American College of Cardiology Foundation</rights><rights>Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited May 30, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-3bf6fbcc58fb6aaf9dc78469bfb089e49ee834ef0dac113dd55c0176b032b58f3</citedby><cites>FETCH-LOGICAL-c439t-3bf6fbcc58fb6aaf9dc78469bfb089e49ee834ef0dac113dd55c0176b032b58f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jacc.2017.03.571$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28545640$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Krittanawong, Chayakrit, MD</creatorcontrib><creatorcontrib>Zhang, HongJu, PhD</creatorcontrib><creatorcontrib>Wang, Zhen, PhD</creatorcontrib><creatorcontrib>Aydar, Mehmet, PhD</creatorcontrib><creatorcontrib>Kitai, Takeshi, MD, PhD</creatorcontrib><title>Artificial Intelligence in Precision Cardiovascular Medicine</title><title>Journal of the American College of Cardiology</title><addtitle>J Am Coll Cardiol</addtitle><description>Abstract Artificial intelligence (AI) is a field of computer science that aims to mimic human thought processes, learning capacity, and knowledge storage. AI techniques have been applied in cardiovascular medicine to explore novel genotypes and phenotypes in existing diseases, improve the quality of patient care, enable cost-effectiveness, and reduce readmission and mortality rates. Over the past decade, several machine-learning techniques have been used for cardiovascular disease diagnosis and prediction. Each problem requires some degree of understanding of the problem, in terms of cardiovascular medicine and statistics, to apply the optimal machine-learning algorithm. In the near future, AI will result in a paradigm shift toward precision cardiovascular medicine. The potential of AI in cardiovascular medicine is tremendous; however, ignorance of the challenges may overshadow its potential clinical impact. This paper gives a glimpse of AI’s application in cardiovascular clinical care and discusses its potential role in facilitating precision cardiovascular medicine.</description><subject>Agents (artificial intelligence)</subject><subject>Air pollution</subject><subject>Algorithms</subject><subject>Alzheimer's disease</subject><subject>Analytics</subject><subject>Anticoagulants</subject><subject>Arrhythmia</subject><subject>Arteriosclerosis</subject><subject>Artificial Intelligence</subject><subject>Attitude control</subject><subject>Automation</subject><subject>big data</subject><subject>Bleeding</subject><subject>Brain</subject><subject>Cameras</subject><subject>Cardiac arrhythmia</subject><subject>Cardiology</subject><subject>Cardiology - methods</subject><subject>Cardiomyopathy</subject><subject>Cardiovascular</subject><subject>Cardiovascular disease</subject><subject>Cardiovascular diseases</subject><subject>Classification</subject><subject>cognitive computing</subject><subject>Computation</subject><subject>Computer programs</subject><subject>Coronary artery disease</subject><subject>Data processing</subject><subject>Deep learning</subject><subject>Diabetes mellitus</subject><subject>Diagnosis</subject><subject>Failure analysis</subject><subject>Fuzzy systems</subject><subject>Gastrointestinal tract</subject><subject>Genotypes</subject><subject>Hazards</subject><subject>Humans</subject><subject>Hypertension</subject><subject>Internal Medicine</subject><subject>Intervention</subject><subject>Learning algorithms</subject><subject>Lungs</subject><subject>Machine Learning</subject><subject>Media</subject><subject>Medical personnel</subject><subject>Medicine</subject><subject>Minority &amp; ethnic groups</subject><subject>Mortality</subject><subject>Myocardial infarction</subject><subject>Neural networks</subject><subject>Neuroimaging</subject><subject>Optimization</subject><subject>pH effects</subject><subject>Pharmacology</subject><subject>Precision medicine</subject><subject>Precision Medicine - methods</subject><subject>Prevention</subject><subject>Quantitation</subject><subject>Risk factors</subject><subject>Robots</subject><subject>Silicon</subject><subject>Social networks</subject><subject>Speech</subject><subject>Statins</subject><subject>Statistics</subject><subject>Surgery</subject><subject>Survival</subject><subject>Ventricle</subject><subject>Visual perception</subject><issn>0735-1097</issn><issn>1558-3597</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1u1TAQRi1ERS-FF2CBrsSGTcI4jp1YgkrVFT-VWoEErC1nPEYOuUmxk0p9mz4LT4ajW0DqoqvZnO_TzBnGXnAoOXD1pi97i1hWwJsSRCkb_ohtuJRtIaRuHrMNNEIWHHRzzJ6m1AOAarl-wo6rVtZS1bBh787iHHzAYIft-TjTMIQfNCJtw7j9EglDCtP4-3ZnowvTtU24DDZuL8nlyEjP2JG3Q6Lnd_OEff_w_tvuU3Hx-eP57uyiwFrouRCdV75DlK3vlLVeO2zaWunOd9BqqjVRK2ry4CxyLpyTEvNRqgNRdTkkTtjrQ-9VnH4tlGazDwnzsnakaUmGaxBcaV3pjL66h_bTEse83UpVtVaKV5mqDhTGKaVI3lzFsLfxxnAwq1zTm1WuWeUaECbLzaGXd9VLtyf3L_LXZgbeHgDKLq4DRZMwrDZdyCpn46bwcP_pvTgOYQxoh590Q-n_HSZVBszX9b3rd3kjVJs3EH8AqeKgHQ</recordid><startdate>20170530</startdate><enddate>20170530</enddate><creator>Krittanawong, Chayakrit, MD</creator><creator>Zhang, HongJu, PhD</creator><creator>Wang, Zhen, PhD</creator><creator>Aydar, Mehmet, PhD</creator><creator>Kitai, Takeshi, MD, PhD</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>7TK</scope><scope>H94</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope></search><sort><creationdate>20170530</creationdate><title>Artificial Intelligence in Precision Cardiovascular Medicine</title><author>Krittanawong, Chayakrit, MD ; Zhang, HongJu, PhD ; Wang, Zhen, PhD ; Aydar, Mehmet, PhD ; Kitai, Takeshi, MD, PhD</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-3bf6fbcc58fb6aaf9dc78469bfb089e49ee834ef0dac113dd55c0176b032b58f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Agents (artificial intelligence)</topic><topic>Air pollution</topic><topic>Algorithms</topic><topic>Alzheimer's disease</topic><topic>Analytics</topic><topic>Anticoagulants</topic><topic>Arrhythmia</topic><topic>Arteriosclerosis</topic><topic>Artificial Intelligence</topic><topic>Attitude control</topic><topic>Automation</topic><topic>big data</topic><topic>Bleeding</topic><topic>Brain</topic><topic>Cameras</topic><topic>Cardiac arrhythmia</topic><topic>Cardiology</topic><topic>Cardiology - methods</topic><topic>Cardiomyopathy</topic><topic>Cardiovascular</topic><topic>Cardiovascular disease</topic><topic>Cardiovascular diseases</topic><topic>Classification</topic><topic>cognitive computing</topic><topic>Computation</topic><topic>Computer programs</topic><topic>Coronary artery disease</topic><topic>Data processing</topic><topic>Deep learning</topic><topic>Diabetes mellitus</topic><topic>Diagnosis</topic><topic>Failure analysis</topic><topic>Fuzzy systems</topic><topic>Gastrointestinal tract</topic><topic>Genotypes</topic><topic>Hazards</topic><topic>Humans</topic><topic>Hypertension</topic><topic>Internal Medicine</topic><topic>Intervention</topic><topic>Learning algorithms</topic><topic>Lungs</topic><topic>Machine Learning</topic><topic>Media</topic><topic>Medical personnel</topic><topic>Medicine</topic><topic>Minority &amp; ethnic groups</topic><topic>Mortality</topic><topic>Myocardial infarction</topic><topic>Neural networks</topic><topic>Neuroimaging</topic><topic>Optimization</topic><topic>pH effects</topic><topic>Pharmacology</topic><topic>Precision medicine</topic><topic>Precision Medicine - methods</topic><topic>Prevention</topic><topic>Quantitation</topic><topic>Risk factors</topic><topic>Robots</topic><topic>Silicon</topic><topic>Social networks</topic><topic>Speech</topic><topic>Statins</topic><topic>Statistics</topic><topic>Surgery</topic><topic>Survival</topic><topic>Ventricle</topic><topic>Visual perception</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krittanawong, Chayakrit, MD</creatorcontrib><creatorcontrib>Zhang, HongJu, PhD</creatorcontrib><creatorcontrib>Wang, Zhen, PhD</creatorcontrib><creatorcontrib>Aydar, Mehmet, PhD</creatorcontrib><creatorcontrib>Kitai, Takeshi, MD, PhD</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American College of Cardiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krittanawong, Chayakrit, MD</au><au>Zhang, HongJu, PhD</au><au>Wang, Zhen, PhD</au><au>Aydar, Mehmet, PhD</au><au>Kitai, Takeshi, MD, PhD</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial Intelligence in Precision Cardiovascular Medicine</atitle><jtitle>Journal of the American College of Cardiology</jtitle><addtitle>J Am Coll Cardiol</addtitle><date>2017-05-30</date><risdate>2017</risdate><volume>69</volume><issue>21</issue><spage>2657</spage><epage>2664</epage><pages>2657-2664</pages><issn>0735-1097</issn><eissn>1558-3597</eissn><abstract>Abstract Artificial intelligence (AI) is a field of computer science that aims to mimic human thought processes, learning capacity, and knowledge storage. AI techniques have been applied in cardiovascular medicine to explore novel genotypes and phenotypes in existing diseases, improve the quality of patient care, enable cost-effectiveness, and reduce readmission and mortality rates. Over the past decade, several machine-learning techniques have been used for cardiovascular disease diagnosis and prediction. Each problem requires some degree of understanding of the problem, in terms of cardiovascular medicine and statistics, to apply the optimal machine-learning algorithm. In the near future, AI will result in a paradigm shift toward precision cardiovascular medicine. The potential of AI in cardiovascular medicine is tremendous; however, ignorance of the challenges may overshadow its potential clinical impact. This paper gives a glimpse of AI’s application in cardiovascular clinical care and discusses its potential role in facilitating precision cardiovascular medicine.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>28545640</pmid><doi>10.1016/j.jacc.2017.03.571</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0735-1097
ispartof Journal of the American College of Cardiology, 2017-05, Vol.69 (21), p.2657-2664
issn 0735-1097
1558-3597
language eng
recordid cdi_proquest_miscellaneous_1903169929
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via ScienceDirect (Elsevier); Alma/SFX Local Collection
subjects Agents (artificial intelligence)
Air pollution
Algorithms
Alzheimer's disease
Analytics
Anticoagulants
Arrhythmia
Arteriosclerosis
Artificial Intelligence
Attitude control
Automation
big data
Bleeding
Brain
Cameras
Cardiac arrhythmia
Cardiology
Cardiology - methods
Cardiomyopathy
Cardiovascular
Cardiovascular disease
Cardiovascular diseases
Classification
cognitive computing
Computation
Computer programs
Coronary artery disease
Data processing
Deep learning
Diabetes mellitus
Diagnosis
Failure analysis
Fuzzy systems
Gastrointestinal tract
Genotypes
Hazards
Humans
Hypertension
Internal Medicine
Intervention
Learning algorithms
Lungs
Machine Learning
Media
Medical personnel
Medicine
Minority & ethnic groups
Mortality
Myocardial infarction
Neural networks
Neuroimaging
Optimization
pH effects
Pharmacology
Precision medicine
Precision Medicine - methods
Prevention
Quantitation
Risk factors
Robots
Silicon
Social networks
Speech
Statins
Statistics
Surgery
Survival
Ventricle
Visual perception
title Artificial Intelligence in Precision Cardiovascular Medicine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T15%3A59%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20Intelligence%20in%20Precision%C2%A0Cardiovascular%20Medicine&rft.jtitle=Journal%20of%20the%20American%20College%20of%20Cardiology&rft.au=Krittanawong,%20Chayakrit,%20MD&rft.date=2017-05-30&rft.volume=69&rft.issue=21&rft.spage=2657&rft.epage=2664&rft.pages=2657-2664&rft.issn=0735-1097&rft.eissn=1558-3597&rft_id=info:doi/10.1016/j.jacc.2017.03.571&rft_dat=%3Cproquest_cross%3E1903169929%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1902496612&rft_id=info:pmid/28545640&rft_els_id=1_s2_0_S0735109717368456&rfr_iscdi=true