Role of N‐glycosylation in EGFR ectodomain ligand binding
ABSTRACT The epidermal growth factor receptor (EGFR) is a tyrosine kinase protein, overexpressed in several cancers. The extracellular domain of EGFR is known to be heavily glycosylated. Growth factor (mostly epidermal growth factor or EGF) binding activates EGFR. This occurs by inducing the transit...
Gespeichert in:
Veröffentlicht in: | Proteins, structure, function, and bioinformatics structure, function, and bioinformatics, 2017-08, Vol.85 (8), p.1529-1549 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1549 |
---|---|
container_issue | 8 |
container_start_page | 1529 |
container_title | Proteins, structure, function, and bioinformatics |
container_volume | 85 |
creator | Azimzadeh Irani, Maryam Kannan, Srinivasaraghavan Verma, Chandra |
description | ABSTRACT
The epidermal growth factor receptor (EGFR) is a tyrosine kinase protein, overexpressed in several cancers. The extracellular domain of EGFR is known to be heavily glycosylated. Growth factor (mostly epidermal growth factor or EGF) binding activates EGFR. This occurs by inducing the transition from the autoinhibited tethered conformation to an extended conformation of the monomeric form of EGFR and by stabilizing the flexible preformed dimer. Activated EGFR adopts a back‐to‐back dimeric conformation after binding of another homologous receptor to its extracellular domain as the dimeric partner. Several antibodies inhibit EGFR by targeting the growth factor binding site or the dimeric interfaces. Glycosylation has been shown to be important for modulating the stability and function of EGFR. Here, atomistic MD simulations show that N‐glycosylation of the EGFR extracellular domain plays critical roles in the binding of growth factors, monoclonal antibodies, and the dimeric partners to the monomeric EGFR extracellular domain. N‐glycosylation results in the formation of several noncovalent interactions between the glycans and EGFR extracellular domain near the EGF binding site. This stabilizes the growth factor binding site, resulting in stronger interactions (electrostatic) between the growth factor and EGFR. N‐glycosylation also helps maintain the dimeric interface and plays distinct roles in binding of antibodies to spatially separated epitopes of the EGFR extracellular domain. Analysis of SNP data suggests the possibility of altered glycosylation with functional consequences. Proteins 2017; 85:1529–1549. © 2017 Wiley Periodicals, Inc. |
doi_str_mv | 10.1002/prot.25314 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1903168750</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1920629350</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4234-6e79412f1c7a7628eb9e5d6aa7783794c2837e4e0bd905ba15a55334db7eca1a3</originalsourceid><addsrcrecordid>eNp90E9LwzAYBvAgipvTix9ACl5E6MyfpknxJGObwnAy5jmkbToysmY2LdKbH8HP6CcxW6cHD55ewvvjIe8DwCWCQwQhvttWth5iSlB0BPoIJiyEiETHoA85ZyGhnPbAmXNrCGGckPgU9DCPeMw47oP7hTUqsEXw_PXxuTJtZl1rZK1tGegyGE8ni0Bltc3tRvq30StZ5kGqy1yXq3NwUkjj1MVhDsDrZLwcPYaz-fRp9DALswiTKIwVSyKEC5QxyWLMVZoomsdSMsaJX2XYDxUpmOYJpKlEVFJKSJSnTGUSSTIAN12uP_StUa4WG-0yZYwslW2cQAkkKOaMQk-v_9C1barS_84rDGOckL267VRWWecqVYhtpTeyagWCYlep2FUq9pV6fHWIbNKNyn_pT4ceoA68a6Paf6LEy2K-7EK_Abf9gAg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1920629350</pqid></control><display><type>article</type><title>Role of N‐glycosylation in EGFR ectodomain ligand binding</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Azimzadeh Irani, Maryam ; Kannan, Srinivasaraghavan ; Verma, Chandra</creator><creatorcontrib>Azimzadeh Irani, Maryam ; Kannan, Srinivasaraghavan ; Verma, Chandra</creatorcontrib><description>ABSTRACT
The epidermal growth factor receptor (EGFR) is a tyrosine kinase protein, overexpressed in several cancers. The extracellular domain of EGFR is known to be heavily glycosylated. Growth factor (mostly epidermal growth factor or EGF) binding activates EGFR. This occurs by inducing the transition from the autoinhibited tethered conformation to an extended conformation of the monomeric form of EGFR and by stabilizing the flexible preformed dimer. Activated EGFR adopts a back‐to‐back dimeric conformation after binding of another homologous receptor to its extracellular domain as the dimeric partner. Several antibodies inhibit EGFR by targeting the growth factor binding site or the dimeric interfaces. Glycosylation has been shown to be important for modulating the stability and function of EGFR. Here, atomistic MD simulations show that N‐glycosylation of the EGFR extracellular domain plays critical roles in the binding of growth factors, monoclonal antibodies, and the dimeric partners to the monomeric EGFR extracellular domain. N‐glycosylation results in the formation of several noncovalent interactions between the glycans and EGFR extracellular domain near the EGF binding site. This stabilizes the growth factor binding site, resulting in stronger interactions (electrostatic) between the growth factor and EGFR. N‐glycosylation also helps maintain the dimeric interface and plays distinct roles in binding of antibodies to spatially separated epitopes of the EGFR extracellular domain. Analysis of SNP data suggests the possibility of altered glycosylation with functional consequences. Proteins 2017; 85:1529–1549. © 2017 Wiley Periodicals, Inc.</description><identifier>ISSN: 0887-3585</identifier><identifier>EISSN: 1097-0134</identifier><identifier>DOI: 10.1002/prot.25314</identifier><identifier>PMID: 28486782</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Amino Acid Motifs ; Antibodies, Monoclonal - chemistry ; Antibodies, Monoclonal - metabolism ; Binding Sites ; Crystallography, X-Ray ; Data processing ; dimeric partner ; EGFR ; Electrostatic properties ; Epidermal growth factor ; Epidermal Growth Factor - chemistry ; Epidermal Growth Factor - metabolism ; Epidermal growth factor receptors ; Epitopes ; Epitopes - chemistry ; Epitopes - metabolism ; Glycosylation ; growth factor ; Growth factors ; Homology ; Humans ; Immunoglobulins ; Interfaces ; Kinases ; Models, Molecular ; Molecular Dynamics Simulation ; Monoclonal antibodies ; monoclonal antibody ; N‐glycosylation ; Polymorphism, Single Nucleotide ; Polysaccharides ; Protein Binding ; Protein Conformation, alpha-Helical ; Protein Interaction Domains and Motifs ; Protein Multimerization ; Protein Stability ; Protein structure ; Protein Structure, Tertiary ; Protein-tyrosine kinase ; Proteins ; Receptor, Epidermal Growth Factor - chemistry ; Receptor, Epidermal Growth Factor - metabolism ; Single-nucleotide polymorphism ; Static Electricity ; Thermodynamics ; Tyrosine</subject><ispartof>Proteins, structure, function, and bioinformatics, 2017-08, Vol.85 (8), p.1529-1549</ispartof><rights>2017 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4234-6e79412f1c7a7628eb9e5d6aa7783794c2837e4e0bd905ba15a55334db7eca1a3</citedby><cites>FETCH-LOGICAL-c4234-6e79412f1c7a7628eb9e5d6aa7783794c2837e4e0bd905ba15a55334db7eca1a3</cites><orcidid>0000-0001-8312-7151</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fprot.25314$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fprot.25314$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28486782$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Azimzadeh Irani, Maryam</creatorcontrib><creatorcontrib>Kannan, Srinivasaraghavan</creatorcontrib><creatorcontrib>Verma, Chandra</creatorcontrib><title>Role of N‐glycosylation in EGFR ectodomain ligand binding</title><title>Proteins, structure, function, and bioinformatics</title><addtitle>Proteins</addtitle><description>ABSTRACT
The epidermal growth factor receptor (EGFR) is a tyrosine kinase protein, overexpressed in several cancers. The extracellular domain of EGFR is known to be heavily glycosylated. Growth factor (mostly epidermal growth factor or EGF) binding activates EGFR. This occurs by inducing the transition from the autoinhibited tethered conformation to an extended conformation of the monomeric form of EGFR and by stabilizing the flexible preformed dimer. Activated EGFR adopts a back‐to‐back dimeric conformation after binding of another homologous receptor to its extracellular domain as the dimeric partner. Several antibodies inhibit EGFR by targeting the growth factor binding site or the dimeric interfaces. Glycosylation has been shown to be important for modulating the stability and function of EGFR. Here, atomistic MD simulations show that N‐glycosylation of the EGFR extracellular domain plays critical roles in the binding of growth factors, monoclonal antibodies, and the dimeric partners to the monomeric EGFR extracellular domain. N‐glycosylation results in the formation of several noncovalent interactions between the glycans and EGFR extracellular domain near the EGF binding site. This stabilizes the growth factor binding site, resulting in stronger interactions (electrostatic) between the growth factor and EGFR. N‐glycosylation also helps maintain the dimeric interface and plays distinct roles in binding of antibodies to spatially separated epitopes of the EGFR extracellular domain. Analysis of SNP data suggests the possibility of altered glycosylation with functional consequences. Proteins 2017; 85:1529–1549. © 2017 Wiley Periodicals, Inc.</description><subject>Amino Acid Motifs</subject><subject>Antibodies, Monoclonal - chemistry</subject><subject>Antibodies, Monoclonal - metabolism</subject><subject>Binding Sites</subject><subject>Crystallography, X-Ray</subject><subject>Data processing</subject><subject>dimeric partner</subject><subject>EGFR</subject><subject>Electrostatic properties</subject><subject>Epidermal growth factor</subject><subject>Epidermal Growth Factor - chemistry</subject><subject>Epidermal Growth Factor - metabolism</subject><subject>Epidermal growth factor receptors</subject><subject>Epitopes</subject><subject>Epitopes - chemistry</subject><subject>Epitopes - metabolism</subject><subject>Glycosylation</subject><subject>growth factor</subject><subject>Growth factors</subject><subject>Homology</subject><subject>Humans</subject><subject>Immunoglobulins</subject><subject>Interfaces</subject><subject>Kinases</subject><subject>Models, Molecular</subject><subject>Molecular Dynamics Simulation</subject><subject>Monoclonal antibodies</subject><subject>monoclonal antibody</subject><subject>N‐glycosylation</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Polysaccharides</subject><subject>Protein Binding</subject><subject>Protein Conformation, alpha-Helical</subject><subject>Protein Interaction Domains and Motifs</subject><subject>Protein Multimerization</subject><subject>Protein Stability</subject><subject>Protein structure</subject><subject>Protein Structure, Tertiary</subject><subject>Protein-tyrosine kinase</subject><subject>Proteins</subject><subject>Receptor, Epidermal Growth Factor - chemistry</subject><subject>Receptor, Epidermal Growth Factor - metabolism</subject><subject>Single-nucleotide polymorphism</subject><subject>Static Electricity</subject><subject>Thermodynamics</subject><subject>Tyrosine</subject><issn>0887-3585</issn><issn>1097-0134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90E9LwzAYBvAgipvTix9ACl5E6MyfpknxJGObwnAy5jmkbToysmY2LdKbH8HP6CcxW6cHD55ewvvjIe8DwCWCQwQhvttWth5iSlB0BPoIJiyEiETHoA85ZyGhnPbAmXNrCGGckPgU9DCPeMw47oP7hTUqsEXw_PXxuTJtZl1rZK1tGegyGE8ni0Bltc3tRvq30StZ5kGqy1yXq3NwUkjj1MVhDsDrZLwcPYaz-fRp9DALswiTKIwVSyKEC5QxyWLMVZoomsdSMsaJX2XYDxUpmOYJpKlEVFJKSJSnTGUSSTIAN12uP_StUa4WG-0yZYwslW2cQAkkKOaMQk-v_9C1barS_84rDGOckL267VRWWecqVYhtpTeyagWCYlep2FUq9pV6fHWIbNKNyn_pT4ceoA68a6Paf6LEy2K-7EK_Abf9gAg</recordid><startdate>201708</startdate><enddate>201708</enddate><creator>Azimzadeh Irani, Maryam</creator><creator>Kannan, Srinivasaraghavan</creator><creator>Verma, Chandra</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8312-7151</orcidid></search><sort><creationdate>201708</creationdate><title>Role of N‐glycosylation in EGFR ectodomain ligand binding</title><author>Azimzadeh Irani, Maryam ; Kannan, Srinivasaraghavan ; Verma, Chandra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4234-6e79412f1c7a7628eb9e5d6aa7783794c2837e4e0bd905ba15a55334db7eca1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Amino Acid Motifs</topic><topic>Antibodies, Monoclonal - chemistry</topic><topic>Antibodies, Monoclonal - metabolism</topic><topic>Binding Sites</topic><topic>Crystallography, X-Ray</topic><topic>Data processing</topic><topic>dimeric partner</topic><topic>EGFR</topic><topic>Electrostatic properties</topic><topic>Epidermal growth factor</topic><topic>Epidermal Growth Factor - chemistry</topic><topic>Epidermal Growth Factor - metabolism</topic><topic>Epidermal growth factor receptors</topic><topic>Epitopes</topic><topic>Epitopes - chemistry</topic><topic>Epitopes - metabolism</topic><topic>Glycosylation</topic><topic>growth factor</topic><topic>Growth factors</topic><topic>Homology</topic><topic>Humans</topic><topic>Immunoglobulins</topic><topic>Interfaces</topic><topic>Kinases</topic><topic>Models, Molecular</topic><topic>Molecular Dynamics Simulation</topic><topic>Monoclonal antibodies</topic><topic>monoclonal antibody</topic><topic>N‐glycosylation</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Polysaccharides</topic><topic>Protein Binding</topic><topic>Protein Conformation, alpha-Helical</topic><topic>Protein Interaction Domains and Motifs</topic><topic>Protein Multimerization</topic><topic>Protein Stability</topic><topic>Protein structure</topic><topic>Protein Structure, Tertiary</topic><topic>Protein-tyrosine kinase</topic><topic>Proteins</topic><topic>Receptor, Epidermal Growth Factor - chemistry</topic><topic>Receptor, Epidermal Growth Factor - metabolism</topic><topic>Single-nucleotide polymorphism</topic><topic>Static Electricity</topic><topic>Thermodynamics</topic><topic>Tyrosine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Azimzadeh Irani, Maryam</creatorcontrib><creatorcontrib>Kannan, Srinivasaraghavan</creatorcontrib><creatorcontrib>Verma, Chandra</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Proteins, structure, function, and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Azimzadeh Irani, Maryam</au><au>Kannan, Srinivasaraghavan</au><au>Verma, Chandra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of N‐glycosylation in EGFR ectodomain ligand binding</atitle><jtitle>Proteins, structure, function, and bioinformatics</jtitle><addtitle>Proteins</addtitle><date>2017-08</date><risdate>2017</risdate><volume>85</volume><issue>8</issue><spage>1529</spage><epage>1549</epage><pages>1529-1549</pages><issn>0887-3585</issn><eissn>1097-0134</eissn><abstract>ABSTRACT
The epidermal growth factor receptor (EGFR) is a tyrosine kinase protein, overexpressed in several cancers. The extracellular domain of EGFR is known to be heavily glycosylated. Growth factor (mostly epidermal growth factor or EGF) binding activates EGFR. This occurs by inducing the transition from the autoinhibited tethered conformation to an extended conformation of the monomeric form of EGFR and by stabilizing the flexible preformed dimer. Activated EGFR adopts a back‐to‐back dimeric conformation after binding of another homologous receptor to its extracellular domain as the dimeric partner. Several antibodies inhibit EGFR by targeting the growth factor binding site or the dimeric interfaces. Glycosylation has been shown to be important for modulating the stability and function of EGFR. Here, atomistic MD simulations show that N‐glycosylation of the EGFR extracellular domain plays critical roles in the binding of growth factors, monoclonal antibodies, and the dimeric partners to the monomeric EGFR extracellular domain. N‐glycosylation results in the formation of several noncovalent interactions between the glycans and EGFR extracellular domain near the EGF binding site. This stabilizes the growth factor binding site, resulting in stronger interactions (electrostatic) between the growth factor and EGFR. N‐glycosylation also helps maintain the dimeric interface and plays distinct roles in binding of antibodies to spatially separated epitopes of the EGFR extracellular domain. Analysis of SNP data suggests the possibility of altered glycosylation with functional consequences. Proteins 2017; 85:1529–1549. © 2017 Wiley Periodicals, Inc.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28486782</pmid><doi>10.1002/prot.25314</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-8312-7151</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0887-3585 |
ispartof | Proteins, structure, function, and bioinformatics, 2017-08, Vol.85 (8), p.1529-1549 |
issn | 0887-3585 1097-0134 |
language | eng |
recordid | cdi_proquest_miscellaneous_1903168750 |
source | MEDLINE; Wiley Online Library All Journals |
subjects | Amino Acid Motifs Antibodies, Monoclonal - chemistry Antibodies, Monoclonal - metabolism Binding Sites Crystallography, X-Ray Data processing dimeric partner EGFR Electrostatic properties Epidermal growth factor Epidermal Growth Factor - chemistry Epidermal Growth Factor - metabolism Epidermal growth factor receptors Epitopes Epitopes - chemistry Epitopes - metabolism Glycosylation growth factor Growth factors Homology Humans Immunoglobulins Interfaces Kinases Models, Molecular Molecular Dynamics Simulation Monoclonal antibodies monoclonal antibody N‐glycosylation Polymorphism, Single Nucleotide Polysaccharides Protein Binding Protein Conformation, alpha-Helical Protein Interaction Domains and Motifs Protein Multimerization Protein Stability Protein structure Protein Structure, Tertiary Protein-tyrosine kinase Proteins Receptor, Epidermal Growth Factor - chemistry Receptor, Epidermal Growth Factor - metabolism Single-nucleotide polymorphism Static Electricity Thermodynamics Tyrosine |
title | Role of N‐glycosylation in EGFR ectodomain ligand binding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T19%3A54%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20N%E2%80%90glycosylation%20in%20EGFR%20ectodomain%20ligand%20binding&rft.jtitle=Proteins,%20structure,%20function,%20and%20bioinformatics&rft.au=Azimzadeh%20Irani,%20Maryam&rft.date=2017-08&rft.volume=85&rft.issue=8&rft.spage=1529&rft.epage=1549&rft.pages=1529-1549&rft.issn=0887-3585&rft.eissn=1097-0134&rft_id=info:doi/10.1002/prot.25314&rft_dat=%3Cproquest_cross%3E1920629350%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1920629350&rft_id=info:pmid/28486782&rfr_iscdi=true |