Role of N‐glycosylation in EGFR ectodomain ligand binding

ABSTRACT The epidermal growth factor receptor (EGFR) is a tyrosine kinase protein, overexpressed in several cancers. The extracellular domain of EGFR is known to be heavily glycosylated. Growth factor (mostly epidermal growth factor or EGF) binding activates EGFR. This occurs by inducing the transit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proteins, structure, function, and bioinformatics structure, function, and bioinformatics, 2017-08, Vol.85 (8), p.1529-1549
Hauptverfasser: Azimzadeh Irani, Maryam, Kannan, Srinivasaraghavan, Verma, Chandra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1549
container_issue 8
container_start_page 1529
container_title Proteins, structure, function, and bioinformatics
container_volume 85
creator Azimzadeh Irani, Maryam
Kannan, Srinivasaraghavan
Verma, Chandra
description ABSTRACT The epidermal growth factor receptor (EGFR) is a tyrosine kinase protein, overexpressed in several cancers. The extracellular domain of EGFR is known to be heavily glycosylated. Growth factor (mostly epidermal growth factor or EGF) binding activates EGFR. This occurs by inducing the transition from the autoinhibited tethered conformation to an extended conformation of the monomeric form of EGFR and by stabilizing the flexible preformed dimer. Activated EGFR adopts a back‐to‐back dimeric conformation after binding of another homologous receptor to its extracellular domain as the dimeric partner. Several antibodies inhibit EGFR by targeting the growth factor binding site or the dimeric interfaces. Glycosylation has been shown to be important for modulating the stability and function of EGFR. Here, atomistic MD simulations show that N‐glycosylation of the EGFR extracellular domain plays critical roles in the binding of growth factors, monoclonal antibodies, and the dimeric partners to the monomeric EGFR extracellular domain. N‐glycosylation results in the formation of several noncovalent interactions between the glycans and EGFR extracellular domain near the EGF binding site. This stabilizes the growth factor binding site, resulting in stronger interactions (electrostatic) between the growth factor and EGFR. N‐glycosylation also helps maintain the dimeric interface and plays distinct roles in binding of antibodies to spatially separated epitopes of the EGFR extracellular domain. Analysis of SNP data suggests the possibility of altered glycosylation with functional consequences. Proteins 2017; 85:1529–1549. © 2017 Wiley Periodicals, Inc.
doi_str_mv 10.1002/prot.25314
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1903168750</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1920629350</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4234-6e79412f1c7a7628eb9e5d6aa7783794c2837e4e0bd905ba15a55334db7eca1a3</originalsourceid><addsrcrecordid>eNp90E9LwzAYBvAgipvTix9ACl5E6MyfpknxJGObwnAy5jmkbToysmY2LdKbH8HP6CcxW6cHD55ewvvjIe8DwCWCQwQhvttWth5iSlB0BPoIJiyEiETHoA85ZyGhnPbAmXNrCGGckPgU9DCPeMw47oP7hTUqsEXw_PXxuTJtZl1rZK1tGegyGE8ni0Bltc3tRvq30StZ5kGqy1yXq3NwUkjj1MVhDsDrZLwcPYaz-fRp9DALswiTKIwVSyKEC5QxyWLMVZoomsdSMsaJX2XYDxUpmOYJpKlEVFJKSJSnTGUSSTIAN12uP_StUa4WG-0yZYwslW2cQAkkKOaMQk-v_9C1barS_84rDGOckL267VRWWecqVYhtpTeyagWCYlep2FUq9pV6fHWIbNKNyn_pT4ceoA68a6Paf6LEy2K-7EK_Abf9gAg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1920629350</pqid></control><display><type>article</type><title>Role of N‐glycosylation in EGFR ectodomain ligand binding</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Azimzadeh Irani, Maryam ; Kannan, Srinivasaraghavan ; Verma, Chandra</creator><creatorcontrib>Azimzadeh Irani, Maryam ; Kannan, Srinivasaraghavan ; Verma, Chandra</creatorcontrib><description>ABSTRACT The epidermal growth factor receptor (EGFR) is a tyrosine kinase protein, overexpressed in several cancers. The extracellular domain of EGFR is known to be heavily glycosylated. Growth factor (mostly epidermal growth factor or EGF) binding activates EGFR. This occurs by inducing the transition from the autoinhibited tethered conformation to an extended conformation of the monomeric form of EGFR and by stabilizing the flexible preformed dimer. Activated EGFR adopts a back‐to‐back dimeric conformation after binding of another homologous receptor to its extracellular domain as the dimeric partner. Several antibodies inhibit EGFR by targeting the growth factor binding site or the dimeric interfaces. Glycosylation has been shown to be important for modulating the stability and function of EGFR. Here, atomistic MD simulations show that N‐glycosylation of the EGFR extracellular domain plays critical roles in the binding of growth factors, monoclonal antibodies, and the dimeric partners to the monomeric EGFR extracellular domain. N‐glycosylation results in the formation of several noncovalent interactions between the glycans and EGFR extracellular domain near the EGF binding site. This stabilizes the growth factor binding site, resulting in stronger interactions (electrostatic) between the growth factor and EGFR. N‐glycosylation also helps maintain the dimeric interface and plays distinct roles in binding of antibodies to spatially separated epitopes of the EGFR extracellular domain. Analysis of SNP data suggests the possibility of altered glycosylation with functional consequences. Proteins 2017; 85:1529–1549. © 2017 Wiley Periodicals, Inc.</description><identifier>ISSN: 0887-3585</identifier><identifier>EISSN: 1097-0134</identifier><identifier>DOI: 10.1002/prot.25314</identifier><identifier>PMID: 28486782</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Amino Acid Motifs ; Antibodies, Monoclonal - chemistry ; Antibodies, Monoclonal - metabolism ; Binding Sites ; Crystallography, X-Ray ; Data processing ; dimeric partner ; EGFR ; Electrostatic properties ; Epidermal growth factor ; Epidermal Growth Factor - chemistry ; Epidermal Growth Factor - metabolism ; Epidermal growth factor receptors ; Epitopes ; Epitopes - chemistry ; Epitopes - metabolism ; Glycosylation ; growth factor ; Growth factors ; Homology ; Humans ; Immunoglobulins ; Interfaces ; Kinases ; Models, Molecular ; Molecular Dynamics Simulation ; Monoclonal antibodies ; monoclonal antibody ; N‐glycosylation ; Polymorphism, Single Nucleotide ; Polysaccharides ; Protein Binding ; Protein Conformation, alpha-Helical ; Protein Interaction Domains and Motifs ; Protein Multimerization ; Protein Stability ; Protein structure ; Protein Structure, Tertiary ; Protein-tyrosine kinase ; Proteins ; Receptor, Epidermal Growth Factor - chemistry ; Receptor, Epidermal Growth Factor - metabolism ; Single-nucleotide polymorphism ; Static Electricity ; Thermodynamics ; Tyrosine</subject><ispartof>Proteins, structure, function, and bioinformatics, 2017-08, Vol.85 (8), p.1529-1549</ispartof><rights>2017 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4234-6e79412f1c7a7628eb9e5d6aa7783794c2837e4e0bd905ba15a55334db7eca1a3</citedby><cites>FETCH-LOGICAL-c4234-6e79412f1c7a7628eb9e5d6aa7783794c2837e4e0bd905ba15a55334db7eca1a3</cites><orcidid>0000-0001-8312-7151</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fprot.25314$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fprot.25314$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28486782$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Azimzadeh Irani, Maryam</creatorcontrib><creatorcontrib>Kannan, Srinivasaraghavan</creatorcontrib><creatorcontrib>Verma, Chandra</creatorcontrib><title>Role of N‐glycosylation in EGFR ectodomain ligand binding</title><title>Proteins, structure, function, and bioinformatics</title><addtitle>Proteins</addtitle><description>ABSTRACT The epidermal growth factor receptor (EGFR) is a tyrosine kinase protein, overexpressed in several cancers. The extracellular domain of EGFR is known to be heavily glycosylated. Growth factor (mostly epidermal growth factor or EGF) binding activates EGFR. This occurs by inducing the transition from the autoinhibited tethered conformation to an extended conformation of the monomeric form of EGFR and by stabilizing the flexible preformed dimer. Activated EGFR adopts a back‐to‐back dimeric conformation after binding of another homologous receptor to its extracellular domain as the dimeric partner. Several antibodies inhibit EGFR by targeting the growth factor binding site or the dimeric interfaces. Glycosylation has been shown to be important for modulating the stability and function of EGFR. Here, atomistic MD simulations show that N‐glycosylation of the EGFR extracellular domain plays critical roles in the binding of growth factors, monoclonal antibodies, and the dimeric partners to the monomeric EGFR extracellular domain. N‐glycosylation results in the formation of several noncovalent interactions between the glycans and EGFR extracellular domain near the EGF binding site. This stabilizes the growth factor binding site, resulting in stronger interactions (electrostatic) between the growth factor and EGFR. N‐glycosylation also helps maintain the dimeric interface and plays distinct roles in binding of antibodies to spatially separated epitopes of the EGFR extracellular domain. Analysis of SNP data suggests the possibility of altered glycosylation with functional consequences. Proteins 2017; 85:1529–1549. © 2017 Wiley Periodicals, Inc.</description><subject>Amino Acid Motifs</subject><subject>Antibodies, Monoclonal - chemistry</subject><subject>Antibodies, Monoclonal - metabolism</subject><subject>Binding Sites</subject><subject>Crystallography, X-Ray</subject><subject>Data processing</subject><subject>dimeric partner</subject><subject>EGFR</subject><subject>Electrostatic properties</subject><subject>Epidermal growth factor</subject><subject>Epidermal Growth Factor - chemistry</subject><subject>Epidermal Growth Factor - metabolism</subject><subject>Epidermal growth factor receptors</subject><subject>Epitopes</subject><subject>Epitopes - chemistry</subject><subject>Epitopes - metabolism</subject><subject>Glycosylation</subject><subject>growth factor</subject><subject>Growth factors</subject><subject>Homology</subject><subject>Humans</subject><subject>Immunoglobulins</subject><subject>Interfaces</subject><subject>Kinases</subject><subject>Models, Molecular</subject><subject>Molecular Dynamics Simulation</subject><subject>Monoclonal antibodies</subject><subject>monoclonal antibody</subject><subject>N‐glycosylation</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Polysaccharides</subject><subject>Protein Binding</subject><subject>Protein Conformation, alpha-Helical</subject><subject>Protein Interaction Domains and Motifs</subject><subject>Protein Multimerization</subject><subject>Protein Stability</subject><subject>Protein structure</subject><subject>Protein Structure, Tertiary</subject><subject>Protein-tyrosine kinase</subject><subject>Proteins</subject><subject>Receptor, Epidermal Growth Factor - chemistry</subject><subject>Receptor, Epidermal Growth Factor - metabolism</subject><subject>Single-nucleotide polymorphism</subject><subject>Static Electricity</subject><subject>Thermodynamics</subject><subject>Tyrosine</subject><issn>0887-3585</issn><issn>1097-0134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90E9LwzAYBvAgipvTix9ACl5E6MyfpknxJGObwnAy5jmkbToysmY2LdKbH8HP6CcxW6cHD55ewvvjIe8DwCWCQwQhvttWth5iSlB0BPoIJiyEiETHoA85ZyGhnPbAmXNrCGGckPgU9DCPeMw47oP7hTUqsEXw_PXxuTJtZl1rZK1tGegyGE8ni0Bltc3tRvq30StZ5kGqy1yXq3NwUkjj1MVhDsDrZLwcPYaz-fRp9DALswiTKIwVSyKEC5QxyWLMVZoomsdSMsaJX2XYDxUpmOYJpKlEVFJKSJSnTGUSSTIAN12uP_StUa4WG-0yZYwslW2cQAkkKOaMQk-v_9C1barS_84rDGOckL267VRWWecqVYhtpTeyagWCYlep2FUq9pV6fHWIbNKNyn_pT4ceoA68a6Paf6LEy2K-7EK_Abf9gAg</recordid><startdate>201708</startdate><enddate>201708</enddate><creator>Azimzadeh Irani, Maryam</creator><creator>Kannan, Srinivasaraghavan</creator><creator>Verma, Chandra</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8312-7151</orcidid></search><sort><creationdate>201708</creationdate><title>Role of N‐glycosylation in EGFR ectodomain ligand binding</title><author>Azimzadeh Irani, Maryam ; Kannan, Srinivasaraghavan ; Verma, Chandra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4234-6e79412f1c7a7628eb9e5d6aa7783794c2837e4e0bd905ba15a55334db7eca1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Amino Acid Motifs</topic><topic>Antibodies, Monoclonal - chemistry</topic><topic>Antibodies, Monoclonal - metabolism</topic><topic>Binding Sites</topic><topic>Crystallography, X-Ray</topic><topic>Data processing</topic><topic>dimeric partner</topic><topic>EGFR</topic><topic>Electrostatic properties</topic><topic>Epidermal growth factor</topic><topic>Epidermal Growth Factor - chemistry</topic><topic>Epidermal Growth Factor - metabolism</topic><topic>Epidermal growth factor receptors</topic><topic>Epitopes</topic><topic>Epitopes - chemistry</topic><topic>Epitopes - metabolism</topic><topic>Glycosylation</topic><topic>growth factor</topic><topic>Growth factors</topic><topic>Homology</topic><topic>Humans</topic><topic>Immunoglobulins</topic><topic>Interfaces</topic><topic>Kinases</topic><topic>Models, Molecular</topic><topic>Molecular Dynamics Simulation</topic><topic>Monoclonal antibodies</topic><topic>monoclonal antibody</topic><topic>N‐glycosylation</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Polysaccharides</topic><topic>Protein Binding</topic><topic>Protein Conformation, alpha-Helical</topic><topic>Protein Interaction Domains and Motifs</topic><topic>Protein Multimerization</topic><topic>Protein Stability</topic><topic>Protein structure</topic><topic>Protein Structure, Tertiary</topic><topic>Protein-tyrosine kinase</topic><topic>Proteins</topic><topic>Receptor, Epidermal Growth Factor - chemistry</topic><topic>Receptor, Epidermal Growth Factor - metabolism</topic><topic>Single-nucleotide polymorphism</topic><topic>Static Electricity</topic><topic>Thermodynamics</topic><topic>Tyrosine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Azimzadeh Irani, Maryam</creatorcontrib><creatorcontrib>Kannan, Srinivasaraghavan</creatorcontrib><creatorcontrib>Verma, Chandra</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Proteins, structure, function, and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Azimzadeh Irani, Maryam</au><au>Kannan, Srinivasaraghavan</au><au>Verma, Chandra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of N‐glycosylation in EGFR ectodomain ligand binding</atitle><jtitle>Proteins, structure, function, and bioinformatics</jtitle><addtitle>Proteins</addtitle><date>2017-08</date><risdate>2017</risdate><volume>85</volume><issue>8</issue><spage>1529</spage><epage>1549</epage><pages>1529-1549</pages><issn>0887-3585</issn><eissn>1097-0134</eissn><abstract>ABSTRACT The epidermal growth factor receptor (EGFR) is a tyrosine kinase protein, overexpressed in several cancers. The extracellular domain of EGFR is known to be heavily glycosylated. Growth factor (mostly epidermal growth factor or EGF) binding activates EGFR. This occurs by inducing the transition from the autoinhibited tethered conformation to an extended conformation of the monomeric form of EGFR and by stabilizing the flexible preformed dimer. Activated EGFR adopts a back‐to‐back dimeric conformation after binding of another homologous receptor to its extracellular domain as the dimeric partner. Several antibodies inhibit EGFR by targeting the growth factor binding site or the dimeric interfaces. Glycosylation has been shown to be important for modulating the stability and function of EGFR. Here, atomistic MD simulations show that N‐glycosylation of the EGFR extracellular domain plays critical roles in the binding of growth factors, monoclonal antibodies, and the dimeric partners to the monomeric EGFR extracellular domain. N‐glycosylation results in the formation of several noncovalent interactions between the glycans and EGFR extracellular domain near the EGF binding site. This stabilizes the growth factor binding site, resulting in stronger interactions (electrostatic) between the growth factor and EGFR. N‐glycosylation also helps maintain the dimeric interface and plays distinct roles in binding of antibodies to spatially separated epitopes of the EGFR extracellular domain. Analysis of SNP data suggests the possibility of altered glycosylation with functional consequences. Proteins 2017; 85:1529–1549. © 2017 Wiley Periodicals, Inc.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28486782</pmid><doi>10.1002/prot.25314</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-8312-7151</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0887-3585
ispartof Proteins, structure, function, and bioinformatics, 2017-08, Vol.85 (8), p.1529-1549
issn 0887-3585
1097-0134
language eng
recordid cdi_proquest_miscellaneous_1903168750
source MEDLINE; Wiley Online Library All Journals
subjects Amino Acid Motifs
Antibodies, Monoclonal - chemistry
Antibodies, Monoclonal - metabolism
Binding Sites
Crystallography, X-Ray
Data processing
dimeric partner
EGFR
Electrostatic properties
Epidermal growth factor
Epidermal Growth Factor - chemistry
Epidermal Growth Factor - metabolism
Epidermal growth factor receptors
Epitopes
Epitopes - chemistry
Epitopes - metabolism
Glycosylation
growth factor
Growth factors
Homology
Humans
Immunoglobulins
Interfaces
Kinases
Models, Molecular
Molecular Dynamics Simulation
Monoclonal antibodies
monoclonal antibody
N‐glycosylation
Polymorphism, Single Nucleotide
Polysaccharides
Protein Binding
Protein Conformation, alpha-Helical
Protein Interaction Domains and Motifs
Protein Multimerization
Protein Stability
Protein structure
Protein Structure, Tertiary
Protein-tyrosine kinase
Proteins
Receptor, Epidermal Growth Factor - chemistry
Receptor, Epidermal Growth Factor - metabolism
Single-nucleotide polymorphism
Static Electricity
Thermodynamics
Tyrosine
title Role of N‐glycosylation in EGFR ectodomain ligand binding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T19%3A54%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20N%E2%80%90glycosylation%20in%20EGFR%20ectodomain%20ligand%20binding&rft.jtitle=Proteins,%20structure,%20function,%20and%20bioinformatics&rft.au=Azimzadeh%20Irani,%20Maryam&rft.date=2017-08&rft.volume=85&rft.issue=8&rft.spage=1529&rft.epage=1549&rft.pages=1529-1549&rft.issn=0887-3585&rft.eissn=1097-0134&rft_id=info:doi/10.1002/prot.25314&rft_dat=%3Cproquest_cross%3E1920629350%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1920629350&rft_id=info:pmid/28486782&rfr_iscdi=true