Repeated Insect Defoliation Effects on Growth, Nitrogen Acquisition, Carbohydrates, and Root Demography of Poplars
Large-scale outbreaks of defoliating insects are common in temperate forests. The effects of defoliation on tree physiology are expected to cascade through the entire forest ecosystem, altering carbon, nitrogen, and water fluxes, and subsequently affecting nitrogen cycling and plant-herbivore intera...
Gespeichert in:
Veröffentlicht in: | Oecologia 2001-09, Vol.129 (1), p.65-74 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 74 |
---|---|
container_issue | 1 |
container_start_page | 65 |
container_title | Oecologia |
container_volume | 129 |
creator | Kevin R. Kosola Dickmann, Donald I. Paul, Eldor A. Parry, Dylan |
description | Large-scale outbreaks of defoliating insects are common in temperate forests. The effects of defoliation on tree physiology are expected to cascade through the entire forest ecosystem, altering carbon, nitrogen, and water fluxes, and subsequently affecting nitrogen cycling and plant-herbivore interactions. If these post-defoliation changes are largely driven by N deficiency, tree root system responses to defoliation should be central to regulating the long-term effects of defoliation; N fertilization should reverse the effects. We examined these phenomena in a 3-year large-scale replicated manipulative field experiment in a hybrid poplar plantation, where we regulated defoliation by gypsy moths as well as nitrogen availability. To our knowledge, this is the first manipulative field experiment at this scale to examine the effects of severe insect defoliation on whole-tree physiology. Defoliation decreased tree growth and increased the rate of top dieback in the stand. Defoliation led to transient declines in carbon allocation to starch in fine roots, trunk, and twigs in the year of heaviest defoliation. Root production and root mortality were unaffected by the heaviest defoliation, but nitrate and ammonium uptake were strongly depressed. N fertilization increased tree growth, but did not alter defoliation effects on starch accumulation or top dieback. Defoliation and fertilization treatments did not interact. In this system, defoliation effects on tree recovery of leaf nitrogen lost to herbivory were primarily driven by effects on nitrogen uptake, rather than effects on root production or mortality. |
doi_str_mv | 10.1007/s004420100694 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1903167822</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4223057</jstor_id><sourcerecordid>4223057</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-d84b36c758570633a15613d7245c89539418601e7f872e35a24fd65ca5ddb9ef3</originalsourceid><addsrcrecordid>eNp9kU1PGzEQhi1UBGnKkRuqfKHqIUv9ubaPKKWAhKBC5bxy_EEWbdaLZ6Mq_76OklL1wsmj8eNnxnoROqXkghKivgEhQjBS6tqIAzShgrOKGm4-oAkhzFRaCnOMPgK8EEIFlfIIHbPSVOXBBOXHMAQ7Bo9vewhuxN9DTF1rxzb1-CrG0gJcyuucfo_LGb5vx5yeQ48v3eu6hXbLzfDc5kVabnwuJphh23v8mNJWtkrP2Q7LDU4R_0xDZzN8QofRdhBO9ucUPf24-jW_qe4erm_nl3eV44qPlddiwWunpJZlVc4tlTXlXjEhnTaSG0F1TWhQUSsWuLRMRF9LZ6X3CxMin6KvO--Q0-s6wNisWnCh62wf0hoaagintdKMFfTL-6gmxugyfoqqHehyAsghNkNuVzZvGkqabR7Nf3kU_vNevF6sgn-j_wZQgPM9YMHZLmbbuxb-WQUVUpXfT9HZjnuBMeW3e1GWJ1LxP3REmrU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18099861</pqid></control><display><type>article</type><title>Repeated Insect Defoliation Effects on Growth, Nitrogen Acquisition, Carbohydrates, and Root Demography of Poplars</title><source>Jstor Complete Legacy</source><source>Springer Nature - Complete Springer Journals</source><creator>Kevin R. Kosola ; Dickmann, Donald I. ; Paul, Eldor A. ; Parry, Dylan</creator><creatorcontrib>Kevin R. Kosola ; Dickmann, Donald I. ; Paul, Eldor A. ; Parry, Dylan</creatorcontrib><description>Large-scale outbreaks of defoliating insects are common in temperate forests. The effects of defoliation on tree physiology are expected to cascade through the entire forest ecosystem, altering carbon, nitrogen, and water fluxes, and subsequently affecting nitrogen cycling and plant-herbivore interactions. If these post-defoliation changes are largely driven by N deficiency, tree root system responses to defoliation should be central to regulating the long-term effects of defoliation; N fertilization should reverse the effects. We examined these phenomena in a 3-year large-scale replicated manipulative field experiment in a hybrid poplar plantation, where we regulated defoliation by gypsy moths as well as nitrogen availability. To our knowledge, this is the first manipulative field experiment at this scale to examine the effects of severe insect defoliation on whole-tree physiology. Defoliation decreased tree growth and increased the rate of top dieback in the stand. Defoliation led to transient declines in carbon allocation to starch in fine roots, trunk, and twigs in the year of heaviest defoliation. Root production and root mortality were unaffected by the heaviest defoliation, but nitrate and ammonium uptake were strongly depressed. N fertilization increased tree growth, but did not alter defoliation effects on starch accumulation or top dieback. Defoliation and fertilization treatments did not interact. In this system, defoliation effects on tree recovery of leaf nitrogen lost to herbivory were primarily driven by effects on nitrogen uptake, rather than effects on root production or mortality.</description><identifier>ISSN: 0029-8549</identifier><identifier>EISSN: 1432-1939</identifier><identifier>DOI: 10.1007/s004420100694</identifier><identifier>PMID: 28547069</identifier><identifier>CODEN: OECOBX</identifier><language>eng</language><publisher>Berlin: Springer-Verlag</publisher><subject>Animal and plant ecology ; Animal, plant and microbial ecology ; Autoecology ; Biological and medical sciences ; Defoliation ; Forest canopy ; Fundamental and applied biological sciences. Psychology ; Herbivores ; Mortality ; Moths ; Phytopathology. Animal pests. Plant and forest protection ; Plant Animal Interactions ; Plant roots ; Plants ; Plants and fungi ; Populus ; Protozoa. Invertebrates ; Records, symptoms, damages, economic importance, population surveys ; Starches ; Tree growth ; Trees</subject><ispartof>Oecologia, 2001-09, Vol.129 (1), p.65-74</ispartof><rights>Copyright 2001 Springer-Verlag</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-d84b36c758570633a15613d7245c89539418601e7f872e35a24fd65ca5ddb9ef3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4223057$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4223057$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14145763$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28547069$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kevin R. Kosola</creatorcontrib><creatorcontrib>Dickmann, Donald I.</creatorcontrib><creatorcontrib>Paul, Eldor A.</creatorcontrib><creatorcontrib>Parry, Dylan</creatorcontrib><title>Repeated Insect Defoliation Effects on Growth, Nitrogen Acquisition, Carbohydrates, and Root Demography of Poplars</title><title>Oecologia</title><addtitle>Oecologia</addtitle><description>Large-scale outbreaks of defoliating insects are common in temperate forests. The effects of defoliation on tree physiology are expected to cascade through the entire forest ecosystem, altering carbon, nitrogen, and water fluxes, and subsequently affecting nitrogen cycling and plant-herbivore interactions. If these post-defoliation changes are largely driven by N deficiency, tree root system responses to defoliation should be central to regulating the long-term effects of defoliation; N fertilization should reverse the effects. We examined these phenomena in a 3-year large-scale replicated manipulative field experiment in a hybrid poplar plantation, where we regulated defoliation by gypsy moths as well as nitrogen availability. To our knowledge, this is the first manipulative field experiment at this scale to examine the effects of severe insect defoliation on whole-tree physiology. Defoliation decreased tree growth and increased the rate of top dieback in the stand. Defoliation led to transient declines in carbon allocation to starch in fine roots, trunk, and twigs in the year of heaviest defoliation. Root production and root mortality were unaffected by the heaviest defoliation, but nitrate and ammonium uptake were strongly depressed. N fertilization increased tree growth, but did not alter defoliation effects on starch accumulation or top dieback. Defoliation and fertilization treatments did not interact. In this system, defoliation effects on tree recovery of leaf nitrogen lost to herbivory were primarily driven by effects on nitrogen uptake, rather than effects on root production or mortality.</description><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Autoecology</subject><subject>Biological and medical sciences</subject><subject>Defoliation</subject><subject>Forest canopy</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Herbivores</subject><subject>Mortality</subject><subject>Moths</subject><subject>Phytopathology. Animal pests. Plant and forest protection</subject><subject>Plant Animal Interactions</subject><subject>Plant roots</subject><subject>Plants</subject><subject>Plants and fungi</subject><subject>Populus</subject><subject>Protozoa. Invertebrates</subject><subject>Records, symptoms, damages, economic importance, population surveys</subject><subject>Starches</subject><subject>Tree growth</subject><subject>Trees</subject><issn>0029-8549</issn><issn>1432-1939</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNp9kU1PGzEQhi1UBGnKkRuqfKHqIUv9ubaPKKWAhKBC5bxy_EEWbdaLZ6Mq_76OklL1wsmj8eNnxnoROqXkghKivgEhQjBS6tqIAzShgrOKGm4-oAkhzFRaCnOMPgK8EEIFlfIIHbPSVOXBBOXHMAQ7Bo9vewhuxN9DTF1rxzb1-CrG0gJcyuucfo_LGb5vx5yeQ48v3eu6hXbLzfDc5kVabnwuJphh23v8mNJWtkrP2Q7LDU4R_0xDZzN8QofRdhBO9ucUPf24-jW_qe4erm_nl3eV44qPlddiwWunpJZlVc4tlTXlXjEhnTaSG0F1TWhQUSsWuLRMRF9LZ6X3CxMin6KvO--Q0-s6wNisWnCh62wf0hoaagintdKMFfTL-6gmxugyfoqqHehyAsghNkNuVzZvGkqabR7Nf3kU_vNevF6sgn-j_wZQgPM9YMHZLmbbuxb-WQUVUpXfT9HZjnuBMeW3e1GWJ1LxP3REmrU</recordid><startdate>20010901</startdate><enddate>20010901</enddate><creator>Kevin R. Kosola</creator><creator>Dickmann, Donald I.</creator><creator>Paul, Eldor A.</creator><creator>Parry, Dylan</creator><general>Springer-Verlag</general><general>Springer</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>C1K</scope><scope>7X8</scope></search><sort><creationdate>20010901</creationdate><title>Repeated Insect Defoliation Effects on Growth, Nitrogen Acquisition, Carbohydrates, and Root Demography of Poplars</title><author>Kevin R. Kosola ; Dickmann, Donald I. ; Paul, Eldor A. ; Parry, Dylan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-d84b36c758570633a15613d7245c89539418601e7f872e35a24fd65ca5ddb9ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Autoecology</topic><topic>Biological and medical sciences</topic><topic>Defoliation</topic><topic>Forest canopy</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Herbivores</topic><topic>Mortality</topic><topic>Moths</topic><topic>Phytopathology. Animal pests. Plant and forest protection</topic><topic>Plant Animal Interactions</topic><topic>Plant roots</topic><topic>Plants</topic><topic>Plants and fungi</topic><topic>Populus</topic><topic>Protozoa. Invertebrates</topic><topic>Records, symptoms, damages, economic importance, population surveys</topic><topic>Starches</topic><topic>Tree growth</topic><topic>Trees</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kevin R. Kosola</creatorcontrib><creatorcontrib>Dickmann, Donald I.</creatorcontrib><creatorcontrib>Paul, Eldor A.</creatorcontrib><creatorcontrib>Parry, Dylan</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><jtitle>Oecologia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kevin R. Kosola</au><au>Dickmann, Donald I.</au><au>Paul, Eldor A.</au><au>Parry, Dylan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Repeated Insect Defoliation Effects on Growth, Nitrogen Acquisition, Carbohydrates, and Root Demography of Poplars</atitle><jtitle>Oecologia</jtitle><addtitle>Oecologia</addtitle><date>2001-09-01</date><risdate>2001</risdate><volume>129</volume><issue>1</issue><spage>65</spage><epage>74</epage><pages>65-74</pages><issn>0029-8549</issn><eissn>1432-1939</eissn><coden>OECOBX</coden><abstract>Large-scale outbreaks of defoliating insects are common in temperate forests. The effects of defoliation on tree physiology are expected to cascade through the entire forest ecosystem, altering carbon, nitrogen, and water fluxes, and subsequently affecting nitrogen cycling and plant-herbivore interactions. If these post-defoliation changes are largely driven by N deficiency, tree root system responses to defoliation should be central to regulating the long-term effects of defoliation; N fertilization should reverse the effects. We examined these phenomena in a 3-year large-scale replicated manipulative field experiment in a hybrid poplar plantation, where we regulated defoliation by gypsy moths as well as nitrogen availability. To our knowledge, this is the first manipulative field experiment at this scale to examine the effects of severe insect defoliation on whole-tree physiology. Defoliation decreased tree growth and increased the rate of top dieback in the stand. Defoliation led to transient declines in carbon allocation to starch in fine roots, trunk, and twigs in the year of heaviest defoliation. Root production and root mortality were unaffected by the heaviest defoliation, but nitrate and ammonium uptake were strongly depressed. N fertilization increased tree growth, but did not alter defoliation effects on starch accumulation or top dieback. Defoliation and fertilization treatments did not interact. In this system, defoliation effects on tree recovery of leaf nitrogen lost to herbivory were primarily driven by effects on nitrogen uptake, rather than effects on root production or mortality.</abstract><cop>Berlin</cop><pub>Springer-Verlag</pub><pmid>28547069</pmid><doi>10.1007/s004420100694</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-8549 |
ispartof | Oecologia, 2001-09, Vol.129 (1), p.65-74 |
issn | 0029-8549 1432-1939 |
language | eng |
recordid | cdi_proquest_miscellaneous_1903167822 |
source | Jstor Complete Legacy; Springer Nature - Complete Springer Journals |
subjects | Animal and plant ecology Animal, plant and microbial ecology Autoecology Biological and medical sciences Defoliation Forest canopy Fundamental and applied biological sciences. Psychology Herbivores Mortality Moths Phytopathology. Animal pests. Plant and forest protection Plant Animal Interactions Plant roots Plants Plants and fungi Populus Protozoa. Invertebrates Records, symptoms, damages, economic importance, population surveys Starches Tree growth Trees |
title | Repeated Insect Defoliation Effects on Growth, Nitrogen Acquisition, Carbohydrates, and Root Demography of Poplars |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T12%3A02%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Repeated%20Insect%20Defoliation%20Effects%20on%20Growth,%20Nitrogen%20Acquisition,%20Carbohydrates,%20and%20Root%20Demography%20of%20Poplars&rft.jtitle=Oecologia&rft.au=Kevin%20R.%20Kosola&rft.date=2001-09-01&rft.volume=129&rft.issue=1&rft.spage=65&rft.epage=74&rft.pages=65-74&rft.issn=0029-8549&rft.eissn=1432-1939&rft.coden=OECOBX&rft_id=info:doi/10.1007/s004420100694&rft_dat=%3Cjstor_proqu%3E4223057%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18099861&rft_id=info:pmid/28547069&rft_jstor_id=4223057&rfr_iscdi=true |