Typical Relaxation of Isolated Many-Body Systems Which Do Not Thermalize

We consider isolated many-body quantum systems which do not thermalize; i.e., expectation values approach an (approximately) steady longtime limit which disagrees with the microcanonical prediction of equilibrium statistical mechanics. A general analytical theory is worked out for the typical tempor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2017-05, Vol.118 (19), p.190601-190601, Article 190601
Hauptverfasser: Balz, Ben N, Reimann, Peter
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 190601
container_issue 19
container_start_page 190601
container_title Physical review letters
container_volume 118
creator Balz, Ben N
Reimann, Peter
description We consider isolated many-body quantum systems which do not thermalize; i.e., expectation values approach an (approximately) steady longtime limit which disagrees with the microcanonical prediction of equilibrium statistical mechanics. A general analytical theory is worked out for the typical temporal relaxation behavior in such cases. The main prerequisites are initial conditions which appreciably populate many energy levels and do not give rise to significant spatial inhomogeneities on macroscopic scales. The theory explains very well the experimental and numerical findings in a trapped-ion quantum simulator exhibiting many-body localization, in ultracold atomic gases, and in integrable hard-core boson and XXZ models.
doi_str_mv 10.1103/PhysRevLett.118.190601
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1903166543</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1903166543</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-a2ae506bdf358320f5f9adb26f619e1a0c1a4001a91bb78a9d0f522907a814183</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRbK3-hbJHL6kz2WSzOWr9aKF-UCsewyTZkEjSrdmtGH-9kVbxNPDyvDPDw9gYYYII4uKp7OxSfyy0c32gJhiDBDxgQ4Qo9iLE4JANAQR6MUA0YCfWvgEA-lIds4GvwkCFvhqy2arbVBnVfKlr-iRXmTU3BZ9bU5PTOb-ndeddmbzjz511urH8tayykl8b_mAcX5W6baiuvvQpOyqotvpsP0fs5fZmNZ15i8e7-fRy4WVCBs4jn3QIMs0LESrhQxEWMeWpLwuJsUaCDCno_6QY0zRSFOc94vsxRKQwQCVG7Hy3d9Oa9622Lmkqm-m6prU2W5v0IgRKGQaiR-UOzVpjbauLZNNWDbVdgpD8WEz-WewDlews9sXx_sY2bXT-V_vVJr4BFqBv8Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1903166543</pqid></control><display><type>article</type><title>Typical Relaxation of Isolated Many-Body Systems Which Do Not Thermalize</title><source>American Physical Society Journals</source><creator>Balz, Ben N ; Reimann, Peter</creator><creatorcontrib>Balz, Ben N ; Reimann, Peter</creatorcontrib><description>We consider isolated many-body quantum systems which do not thermalize; i.e., expectation values approach an (approximately) steady longtime limit which disagrees with the microcanonical prediction of equilibrium statistical mechanics. A general analytical theory is worked out for the typical temporal relaxation behavior in such cases. The main prerequisites are initial conditions which appreciably populate many energy levels and do not give rise to significant spatial inhomogeneities on macroscopic scales. The theory explains very well the experimental and numerical findings in a trapped-ion quantum simulator exhibiting many-body localization, in ultracold atomic gases, and in integrable hard-core boson and XXZ models.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.118.190601</identifier><identifier>PMID: 28548528</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review letters, 2017-05, Vol.118 (19), p.190601-190601, Article 190601</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-a2ae506bdf358320f5f9adb26f619e1a0c1a4001a91bb78a9d0f522907a814183</citedby><cites>FETCH-LOGICAL-c364t-a2ae506bdf358320f5f9adb26f619e1a0c1a4001a91bb78a9d0f522907a814183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28548528$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Balz, Ben N</creatorcontrib><creatorcontrib>Reimann, Peter</creatorcontrib><title>Typical Relaxation of Isolated Many-Body Systems Which Do Not Thermalize</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>We consider isolated many-body quantum systems which do not thermalize; i.e., expectation values approach an (approximately) steady longtime limit which disagrees with the microcanonical prediction of equilibrium statistical mechanics. A general analytical theory is worked out for the typical temporal relaxation behavior in such cases. The main prerequisites are initial conditions which appreciably populate many energy levels and do not give rise to significant spatial inhomogeneities on macroscopic scales. The theory explains very well the experimental and numerical findings in a trapped-ion quantum simulator exhibiting many-body localization, in ultracold atomic gases, and in integrable hard-core boson and XXZ models.</description><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpNkE1Lw0AQhhdRbK3-hbJHL6kz2WSzOWr9aKF-UCsewyTZkEjSrdmtGH-9kVbxNPDyvDPDw9gYYYII4uKp7OxSfyy0c32gJhiDBDxgQ4Qo9iLE4JANAQR6MUA0YCfWvgEA-lIds4GvwkCFvhqy2arbVBnVfKlr-iRXmTU3BZ9bU5PTOb-ndeddmbzjz511urH8tayykl8b_mAcX5W6baiuvvQpOyqotvpsP0fs5fZmNZ15i8e7-fRy4WVCBs4jn3QIMs0LESrhQxEWMeWpLwuJsUaCDCno_6QY0zRSFOc94vsxRKQwQCVG7Hy3d9Oa9622Lmkqm-m6prU2W5v0IgRKGQaiR-UOzVpjbauLZNNWDbVdgpD8WEz-WewDlews9sXx_sY2bXT-V_vVJr4BFqBv8Q</recordid><startdate>20170512</startdate><enddate>20170512</enddate><creator>Balz, Ben N</creator><creator>Reimann, Peter</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20170512</creationdate><title>Typical Relaxation of Isolated Many-Body Systems Which Do Not Thermalize</title><author>Balz, Ben N ; Reimann, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-a2ae506bdf358320f5f9adb26f619e1a0c1a4001a91bb78a9d0f522907a814183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Balz, Ben N</creatorcontrib><creatorcontrib>Reimann, Peter</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Balz, Ben N</au><au>Reimann, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Typical Relaxation of Isolated Many-Body Systems Which Do Not Thermalize</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2017-05-12</date><risdate>2017</risdate><volume>118</volume><issue>19</issue><spage>190601</spage><epage>190601</epage><pages>190601-190601</pages><artnum>190601</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>We consider isolated many-body quantum systems which do not thermalize; i.e., expectation values approach an (approximately) steady longtime limit which disagrees with the microcanonical prediction of equilibrium statistical mechanics. A general analytical theory is worked out for the typical temporal relaxation behavior in such cases. The main prerequisites are initial conditions which appreciably populate many energy levels and do not give rise to significant spatial inhomogeneities on macroscopic scales. The theory explains very well the experimental and numerical findings in a trapped-ion quantum simulator exhibiting many-body localization, in ultracold atomic gases, and in integrable hard-core boson and XXZ models.</abstract><cop>United States</cop><pmid>28548528</pmid><doi>10.1103/PhysRevLett.118.190601</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2017-05, Vol.118 (19), p.190601-190601, Article 190601
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_1903166543
source American Physical Society Journals
title Typical Relaxation of Isolated Many-Body Systems Which Do Not Thermalize
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A39%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Typical%20Relaxation%20of%20Isolated%20Many-Body%20Systems%20Which%20Do%20Not%20Thermalize&rft.jtitle=Physical%20review%20letters&rft.au=Balz,%20Ben%20N&rft.date=2017-05-12&rft.volume=118&rft.issue=19&rft.spage=190601&rft.epage=190601&rft.pages=190601-190601&rft.artnum=190601&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.118.190601&rft_dat=%3Cproquest_cross%3E1903166543%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1903166543&rft_id=info:pmid/28548528&rfr_iscdi=true