Enumeration of WT1‐specific CD8+ T cells for clinical application using an MHC Streptamer based no‐wash single‐platform flow‐cytometric assay

The advent of novel strategies to generate leukemia‐associated‐antigen (LAA)‐specific T cells for adoptive immunotherapies creates a demand for standardized good laboratory practice (GLP)‐compliant enumeration assays to provide a secure clinical environment—whether it is to identify potential donors...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cytometry. Part A 2017-10, Vol.91 (10), p.1001-1008
Hauptverfasser: Matko, Sarah, Teichert, Madeleine, Tunger, Antje, Schmitz, Marc, Bornhauser, Martin, Tonn, Torsten, Odendahl, Marcus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1008
container_issue 10
container_start_page 1001
container_title Cytometry. Part A
container_volume 91
creator Matko, Sarah
Teichert, Madeleine
Tunger, Antje
Schmitz, Marc
Bornhauser, Martin
Tonn, Torsten
Odendahl, Marcus
description The advent of novel strategies to generate leukemia‐associated‐antigen (LAA)‐specific T cells for adoptive immunotherapies creates a demand for standardized good laboratory practice (GLP)‐compliant enumeration assays to provide a secure clinical environment—whether it is to identify potential donors, define therapeutic doses for transplantation, or monitor clinical success. Here, we introduce a no‐wash assay based on single‐platform cell enumeration and Streptamer staining to determine the Wilms' tumor antigen 1 (WT1)‐specific T cell immunity in clinical samples. We analyzed the performance of the WT1‐specific MHC Streptamers in direct comparison to CMV‐ and EBV‐specific MHC Streptamer staining by spiking antigen‐specific T cells in PBMCs. The accuracy of the assay was high for all performed experiments with a mean recovery of 94% and a linear regression of 0.988. Differences were apparent regarding the limit of detection/quantification (LOD/LOQ). While results obtained for WT1 yielded an LOD/LOQ of 0.08 ± 0.04% and 0.11 ± 0.06% (1.33 ± 0.32 cells/µl and 1.9 ± 0.14 cells/µl), the overall LOD/LOQ was notably lower and accounted to 0.02 ± 0.02% and 0.05 ± 0.03% (0.60 ± 0.03 cells/µl and 1.27 ± 0.58 cells/µl). Subsequent screening of 22 healthy individuals revealed significantly higher values for WT1 (0.04 ± 0.02% and 1.5 ± 0.9 cells/µl) than for the irrelevant HIV pol (0.016 ± 0.01% and 0.5 ± 0.4 cells/µl). In contrast, no increased frequencies were observed for WT1‐specific T cells compared to HIV‐specific T cells using a classical wash‐protocol. These findings strongly suggest the use of no‐wash single‐platform assays in combination with MHC Streptamer staining for the detection of low affinity LAA‐specific T cells due to its high accuracy and sensitivity. © 2017 International Society for Advancement of Cytometry
doi_str_mv 10.1002/cyto.a.23146
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1903163919</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1903163919</sourcerecordid><originalsourceid>FETCH-LOGICAL-p3226-14b5e2e0513928a2690b123ed0f9c4988ab645e1f0885d666db3c181a220968a3</originalsourceid><addsrcrecordid>eNpdkc9u1DAQxi0EoqVw44wscUFCu9jjP7KPVSgUqagHFiFO1iRxwJUThzjRam88AhdekCfB2ZYeOM038m--8cwQ8pyzLWcM3jSHOW1xC4JL_YCccqVgI61gD-81wAl5kvMNY0IxAY_JCRglpdD6lPy-GJbeTziHNNDU0S87_ufnrzz6JnShodVb85ruaONjzLRLE21iGEKDkeI4xiKOdUsOwzeKA_14WdFP8-THGYsprTH7lg6pOO4xf6crFn3JxohzcetpF9O-5OsMvZ-n0hFzxsNT8qjDmP2zu3hGPr-72FWXm6vr9x-q86vNKAD0hstaefBMcWHBIGjLag7Ct6yzjbTGYK2l8rxjxqhWa93WouGGIwCz2qA4I69ufccp_Vh8nl0f8josDj4t2XHLBNfCclvQl_-hN2mZhvK7QilQIKVShXpxRy1171s3TqHH6eD-LbwA8hbYh-gP9--cufWYbl2EQ3c8pqu-7q7Pj1L8BeXzlog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1952524455</pqid></control><display><type>article</type><title>Enumeration of WT1‐specific CD8+ T cells for clinical application using an MHC Streptamer based no‐wash single‐platform flow‐cytometric assay</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Matko, Sarah ; Teichert, Madeleine ; Tunger, Antje ; Schmitz, Marc ; Bornhauser, Martin ; Tonn, Torsten ; Odendahl, Marcus</creator><creatorcontrib>Matko, Sarah ; Teichert, Madeleine ; Tunger, Antje ; Schmitz, Marc ; Bornhauser, Martin ; Tonn, Torsten ; Odendahl, Marcus</creatorcontrib><description>The advent of novel strategies to generate leukemia‐associated‐antigen (LAA)‐specific T cells for adoptive immunotherapies creates a demand for standardized good laboratory practice (GLP)‐compliant enumeration assays to provide a secure clinical environment—whether it is to identify potential donors, define therapeutic doses for transplantation, or monitor clinical success. Here, we introduce a no‐wash assay based on single‐platform cell enumeration and Streptamer staining to determine the Wilms' tumor antigen 1 (WT1)‐specific T cell immunity in clinical samples. We analyzed the performance of the WT1‐specific MHC Streptamers in direct comparison to CMV‐ and EBV‐specific MHC Streptamer staining by spiking antigen‐specific T cells in PBMCs. The accuracy of the assay was high for all performed experiments with a mean recovery of 94% and a linear regression of 0.988. Differences were apparent regarding the limit of detection/quantification (LOD/LOQ). While results obtained for WT1 yielded an LOD/LOQ of 0.08 ± 0.04% and 0.11 ± 0.06% (1.33 ± 0.32 cells/µl and 1.9 ± 0.14 cells/µl), the overall LOD/LOQ was notably lower and accounted to 0.02 ± 0.02% and 0.05 ± 0.03% (0.60 ± 0.03 cells/µl and 1.27 ± 0.58 cells/µl). Subsequent screening of 22 healthy individuals revealed significantly higher values for WT1 (0.04 ± 0.02% and 1.5 ± 0.9 cells/µl) than for the irrelevant HIV pol (0.016 ± 0.01% and 0.5 ± 0.4 cells/µl). In contrast, no increased frequencies were observed for WT1‐specific T cells compared to HIV‐specific T cells using a classical wash‐protocol. These findings strongly suggest the use of no‐wash single‐platform assays in combination with MHC Streptamer staining for the detection of low affinity LAA‐specific T cells due to its high accuracy and sensitivity. © 2017 International Society for Advancement of Cytometry</description><identifier>ISSN: 1552-4922</identifier><identifier>EISSN: 1552-4930</identifier><identifier>DOI: 10.1002/cyto.a.23146</identifier><identifier>PMID: 28544366</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Antigens ; antigen‐specific CD8+ T cells ; Assaying ; CD8 antigen ; CD8-Positive T-Lymphocytes - immunology ; CD8-Positive T-Lymphocytes - metabolism ; cell enumeration ; Cytometry ; Enumeration ; Flow Cytometry - methods ; HIV ; Human immunodeficiency virus ; Humans ; Immunity ; Immunotherapy ; Leukemia ; Lymphocytes ; Lymphocytes T ; Major histocompatibility complex ; Major Histocompatibility Complex - immunology ; MHC Streptamer ; no‐wash staining protocol ; Regression analysis ; single‐platform ; Staining ; Staining and Labeling - methods ; Transplantation ; Wilms' tumor ; Wilms' tumor antigen (WT1) ; WT1 Proteins - metabolism</subject><ispartof>Cytometry. Part A, 2017-10, Vol.91 (10), p.1001-1008</ispartof><rights>2017 International Society for Advancement of Cytometry</rights><rights>2017 International Society for Advancement of Cytometry.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcyto.a.23146$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcyto.a.23146$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28544366$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Matko, Sarah</creatorcontrib><creatorcontrib>Teichert, Madeleine</creatorcontrib><creatorcontrib>Tunger, Antje</creatorcontrib><creatorcontrib>Schmitz, Marc</creatorcontrib><creatorcontrib>Bornhauser, Martin</creatorcontrib><creatorcontrib>Tonn, Torsten</creatorcontrib><creatorcontrib>Odendahl, Marcus</creatorcontrib><title>Enumeration of WT1‐specific CD8+ T cells for clinical application using an MHC Streptamer based no‐wash single‐platform flow‐cytometric assay</title><title>Cytometry. Part A</title><addtitle>Cytometry A</addtitle><description>The advent of novel strategies to generate leukemia‐associated‐antigen (LAA)‐specific T cells for adoptive immunotherapies creates a demand for standardized good laboratory practice (GLP)‐compliant enumeration assays to provide a secure clinical environment—whether it is to identify potential donors, define therapeutic doses for transplantation, or monitor clinical success. Here, we introduce a no‐wash assay based on single‐platform cell enumeration and Streptamer staining to determine the Wilms' tumor antigen 1 (WT1)‐specific T cell immunity in clinical samples. We analyzed the performance of the WT1‐specific MHC Streptamers in direct comparison to CMV‐ and EBV‐specific MHC Streptamer staining by spiking antigen‐specific T cells in PBMCs. The accuracy of the assay was high for all performed experiments with a mean recovery of 94% and a linear regression of 0.988. Differences were apparent regarding the limit of detection/quantification (LOD/LOQ). While results obtained for WT1 yielded an LOD/LOQ of 0.08 ± 0.04% and 0.11 ± 0.06% (1.33 ± 0.32 cells/µl and 1.9 ± 0.14 cells/µl), the overall LOD/LOQ was notably lower and accounted to 0.02 ± 0.02% and 0.05 ± 0.03% (0.60 ± 0.03 cells/µl and 1.27 ± 0.58 cells/µl). Subsequent screening of 22 healthy individuals revealed significantly higher values for WT1 (0.04 ± 0.02% and 1.5 ± 0.9 cells/µl) than for the irrelevant HIV pol (0.016 ± 0.01% and 0.5 ± 0.4 cells/µl). In contrast, no increased frequencies were observed for WT1‐specific T cells compared to HIV‐specific T cells using a classical wash‐protocol. These findings strongly suggest the use of no‐wash single‐platform assays in combination with MHC Streptamer staining for the detection of low affinity LAA‐specific T cells due to its high accuracy and sensitivity. © 2017 International Society for Advancement of Cytometry</description><subject>Antigens</subject><subject>antigen‐specific CD8+ T cells</subject><subject>Assaying</subject><subject>CD8 antigen</subject><subject>CD8-Positive T-Lymphocytes - immunology</subject><subject>CD8-Positive T-Lymphocytes - metabolism</subject><subject>cell enumeration</subject><subject>Cytometry</subject><subject>Enumeration</subject><subject>Flow Cytometry - methods</subject><subject>HIV</subject><subject>Human immunodeficiency virus</subject><subject>Humans</subject><subject>Immunity</subject><subject>Immunotherapy</subject><subject>Leukemia</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Major histocompatibility complex</subject><subject>Major Histocompatibility Complex - immunology</subject><subject>MHC Streptamer</subject><subject>no‐wash staining protocol</subject><subject>Regression analysis</subject><subject>single‐platform</subject><subject>Staining</subject><subject>Staining and Labeling - methods</subject><subject>Transplantation</subject><subject>Wilms' tumor</subject><subject>Wilms' tumor antigen (WT1)</subject><subject>WT1 Proteins - metabolism</subject><issn>1552-4922</issn><issn>1552-4930</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc9u1DAQxi0EoqVw44wscUFCu9jjP7KPVSgUqagHFiFO1iRxwJUThzjRam88AhdekCfB2ZYeOM038m--8cwQ8pyzLWcM3jSHOW1xC4JL_YCccqVgI61gD-81wAl5kvMNY0IxAY_JCRglpdD6lPy-GJbeTziHNNDU0S87_ufnrzz6JnShodVb85ruaONjzLRLE21iGEKDkeI4xiKOdUsOwzeKA_14WdFP8-THGYsprTH7lg6pOO4xf6crFn3JxohzcetpF9O-5OsMvZ-n0hFzxsNT8qjDmP2zu3hGPr-72FWXm6vr9x-q86vNKAD0hstaefBMcWHBIGjLag7Ct6yzjbTGYK2l8rxjxqhWa93WouGGIwCz2qA4I69ufccp_Vh8nl0f8josDj4t2XHLBNfCclvQl_-hN2mZhvK7QilQIKVShXpxRy1171s3TqHH6eD-LbwA8hbYh-gP9--cufWYbl2EQ3c8pqu-7q7Pj1L8BeXzlog</recordid><startdate>201710</startdate><enddate>201710</enddate><creator>Matko, Sarah</creator><creator>Teichert, Madeleine</creator><creator>Tunger, Antje</creator><creator>Schmitz, Marc</creator><creator>Bornhauser, Martin</creator><creator>Tonn, Torsten</creator><creator>Odendahl, Marcus</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201710</creationdate><title>Enumeration of WT1‐specific CD8+ T cells for clinical application using an MHC Streptamer based no‐wash single‐platform flow‐cytometric assay</title><author>Matko, Sarah ; Teichert, Madeleine ; Tunger, Antje ; Schmitz, Marc ; Bornhauser, Martin ; Tonn, Torsten ; Odendahl, Marcus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p3226-14b5e2e0513928a2690b123ed0f9c4988ab645e1f0885d666db3c181a220968a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Antigens</topic><topic>antigen‐specific CD8+ T cells</topic><topic>Assaying</topic><topic>CD8 antigen</topic><topic>CD8-Positive T-Lymphocytes - immunology</topic><topic>CD8-Positive T-Lymphocytes - metabolism</topic><topic>cell enumeration</topic><topic>Cytometry</topic><topic>Enumeration</topic><topic>Flow Cytometry - methods</topic><topic>HIV</topic><topic>Human immunodeficiency virus</topic><topic>Humans</topic><topic>Immunity</topic><topic>Immunotherapy</topic><topic>Leukemia</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Major histocompatibility complex</topic><topic>Major Histocompatibility Complex - immunology</topic><topic>MHC Streptamer</topic><topic>no‐wash staining protocol</topic><topic>Regression analysis</topic><topic>single‐platform</topic><topic>Staining</topic><topic>Staining and Labeling - methods</topic><topic>Transplantation</topic><topic>Wilms' tumor</topic><topic>Wilms' tumor antigen (WT1)</topic><topic>WT1 Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matko, Sarah</creatorcontrib><creatorcontrib>Teichert, Madeleine</creatorcontrib><creatorcontrib>Tunger, Antje</creatorcontrib><creatorcontrib>Schmitz, Marc</creatorcontrib><creatorcontrib>Bornhauser, Martin</creatorcontrib><creatorcontrib>Tonn, Torsten</creatorcontrib><creatorcontrib>Odendahl, Marcus</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Cytometry. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matko, Sarah</au><au>Teichert, Madeleine</au><au>Tunger, Antje</au><au>Schmitz, Marc</au><au>Bornhauser, Martin</au><au>Tonn, Torsten</au><au>Odendahl, Marcus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enumeration of WT1‐specific CD8+ T cells for clinical application using an MHC Streptamer based no‐wash single‐platform flow‐cytometric assay</atitle><jtitle>Cytometry. Part A</jtitle><addtitle>Cytometry A</addtitle><date>2017-10</date><risdate>2017</risdate><volume>91</volume><issue>10</issue><spage>1001</spage><epage>1008</epage><pages>1001-1008</pages><issn>1552-4922</issn><eissn>1552-4930</eissn><abstract>The advent of novel strategies to generate leukemia‐associated‐antigen (LAA)‐specific T cells for adoptive immunotherapies creates a demand for standardized good laboratory practice (GLP)‐compliant enumeration assays to provide a secure clinical environment—whether it is to identify potential donors, define therapeutic doses for transplantation, or monitor clinical success. Here, we introduce a no‐wash assay based on single‐platform cell enumeration and Streptamer staining to determine the Wilms' tumor antigen 1 (WT1)‐specific T cell immunity in clinical samples. We analyzed the performance of the WT1‐specific MHC Streptamers in direct comparison to CMV‐ and EBV‐specific MHC Streptamer staining by spiking antigen‐specific T cells in PBMCs. The accuracy of the assay was high for all performed experiments with a mean recovery of 94% and a linear regression of 0.988. Differences were apparent regarding the limit of detection/quantification (LOD/LOQ). While results obtained for WT1 yielded an LOD/LOQ of 0.08 ± 0.04% and 0.11 ± 0.06% (1.33 ± 0.32 cells/µl and 1.9 ± 0.14 cells/µl), the overall LOD/LOQ was notably lower and accounted to 0.02 ± 0.02% and 0.05 ± 0.03% (0.60 ± 0.03 cells/µl and 1.27 ± 0.58 cells/µl). Subsequent screening of 22 healthy individuals revealed significantly higher values for WT1 (0.04 ± 0.02% and 1.5 ± 0.9 cells/µl) than for the irrelevant HIV pol (0.016 ± 0.01% and 0.5 ± 0.4 cells/µl). In contrast, no increased frequencies were observed for WT1‐specific T cells compared to HIV‐specific T cells using a classical wash‐protocol. These findings strongly suggest the use of no‐wash single‐platform assays in combination with MHC Streptamer staining for the detection of low affinity LAA‐specific T cells due to its high accuracy and sensitivity. © 2017 International Society for Advancement of Cytometry</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28544366</pmid><doi>10.1002/cyto.a.23146</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1552-4922
ispartof Cytometry. Part A, 2017-10, Vol.91 (10), p.1001-1008
issn 1552-4922
1552-4930
language eng
recordid cdi_proquest_miscellaneous_1903163919
source Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Antigens
antigen‐specific CD8+ T cells
Assaying
CD8 antigen
CD8-Positive T-Lymphocytes - immunology
CD8-Positive T-Lymphocytes - metabolism
cell enumeration
Cytometry
Enumeration
Flow Cytometry - methods
HIV
Human immunodeficiency virus
Humans
Immunity
Immunotherapy
Leukemia
Lymphocytes
Lymphocytes T
Major histocompatibility complex
Major Histocompatibility Complex - immunology
MHC Streptamer
no‐wash staining protocol
Regression analysis
single‐platform
Staining
Staining and Labeling - methods
Transplantation
Wilms' tumor
Wilms' tumor antigen (WT1)
WT1 Proteins - metabolism
title Enumeration of WT1‐specific CD8+ T cells for clinical application using an MHC Streptamer based no‐wash single‐platform flow‐cytometric assay
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T14%3A33%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enumeration%20of%20WT1%E2%80%90specific%20CD8+%20T%20cells%20for%20clinical%20application%20using%20an%20MHC%20Streptamer%20based%20no%E2%80%90wash%20single%E2%80%90platform%20flow%E2%80%90cytometric%20assay&rft.jtitle=Cytometry.%20Part%20A&rft.au=Matko,%20Sarah&rft.date=2017-10&rft.volume=91&rft.issue=10&rft.spage=1001&rft.epage=1008&rft.pages=1001-1008&rft.issn=1552-4922&rft.eissn=1552-4930&rft_id=info:doi/10.1002/cyto.a.23146&rft_dat=%3Cproquest_pubme%3E1903163919%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1952524455&rft_id=info:pmid/28544366&rfr_iscdi=true