The Effect of Individual Movements and Interventions on the Spread of Influenza in Long-Term Care Facilities

Background. Nosocomial influenza poses a serious risk among residents of long-term care facilities (LTCFs). Objective. We sought to evaluate the effect of resident and staff movements and contact patterns on the outcomes of various intervention strategies for influenza control in an LTCF. Methods. W...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical decision making 2017-11, Vol.37 (8), p.871-881
Hauptverfasser: Najafi, Mehdi, Laskowski, Marek, de Boer, Pieter T., Williams, Evelyn, Chit, Ayman, Moghadas, Seyed M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 881
container_issue 8
container_start_page 871
container_title Medical decision making
container_volume 37
creator Najafi, Mehdi
Laskowski, Marek
de Boer, Pieter T.
Williams, Evelyn
Chit, Ayman
Moghadas, Seyed M.
description Background. Nosocomial influenza poses a serious risk among residents of long-term care facilities (LTCFs). Objective. We sought to evaluate the effect of resident and staff movements and contact patterns on the outcomes of various intervention strategies for influenza control in an LTCF. Methods. We collected contact frequency data in Canada’s largest veterans’ LTCF by enroling residents and staff into a study that tracked their movements through wireless tags and signal receivers. We analyzed and fitted the data to an agent-based simulation model of influenza infection, and performed Monte-Carlo simulations to evaluate the benefit of antiviral prophylaxis and patient isolation added to standard (baseline) infection control practice (i.e., vaccination of residents and staff, plus antiviral treatment of residents with symptomatic infection). Results. We calibrated the model to attack rates of 20%, 40%, and 60% for the baseline scenario. For data-driven movements, we found that the largest reduction in attack rates (12.5% to 27%; ANOVA P < 0.001) was achieved when the baseline strategy was combined with antiviral prophylaxis for all residents for the duration of the outbreak. Isolation of residents with symptomatic infection resulted in little or no effect on the attack rates (2.3% to 4.2%; ANOVA P > 0.2) among residents. In contrast, parameterizing the model with random movements yielded different results, suggesting that the highest benefit was achieved through patient isolation (69.6% to 79.6%; ANOVA P < 0.001) while the additional benefit of prophylaxis was negligible in reducing the cumulative number of infections. Conclusions. Our study revealed a highly structured contact and movement patterns within the LTCF. Accounting for this structure—instead of assuming randomness—in decision analytic methods can result in substantially different predictions.
doi_str_mv 10.1177/0272989X17708564
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1902483583</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0272989X17708564</sage_id><sourcerecordid>1902483583</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-283737f447c54b846579bfd7b032d3386818b3dc5a82bac4fb6a7f454740bb183</originalsourceid><addsrcrecordid>eNp1kM1LxDAQxYMoun7cPUmOXqpJk2zSoyx-LKx4cAVvJWknGmmTNWkX9K83y6oHwdPM8H7vwTyETim5oFTKS1LKslLVc96JElO-gyZUiLKYKvq8iyYbudjoB-gwpTdCKK8U30cHpRJMUUomqFu-Ar62FpoBB4vnvnVr1466w_dhDT34IWHt2ywMENf5dMEnHDwesu9xFUG3W5_tRvCfGjuPF8G_FEuIPZ7pCPhGN65zg4N0jPas7hKcfM8j9HRzvZzdFYuH2_nsalE0nIuhKBWTTFrOZSO4UXwqZGVsKw1hZcuYyt8pw9pGaFUa3XBrpjrjgktOjKGKHaHzbe4qhvcR0lD3LjXQddpDGFNNK1JyxYRiGSVbtIkhpQi2XkXX6_hRU1JvOq7_dpwtZ9_po-mh_TX8lJqBYgsk_QL1Wxijz9_-H_gFwGWDuQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1902483583</pqid></control><display><type>article</type><title>The Effect of Individual Movements and Interventions on the Spread of Influenza in Long-Term Care Facilities</title><source>MEDLINE</source><source>SAGE Complete A-Z List</source><creator>Najafi, Mehdi ; Laskowski, Marek ; de Boer, Pieter T. ; Williams, Evelyn ; Chit, Ayman ; Moghadas, Seyed M.</creator><creatorcontrib>Najafi, Mehdi ; Laskowski, Marek ; de Boer, Pieter T. ; Williams, Evelyn ; Chit, Ayman ; Moghadas, Seyed M.</creatorcontrib><description>Background. Nosocomial influenza poses a serious risk among residents of long-term care facilities (LTCFs). Objective. We sought to evaluate the effect of resident and staff movements and contact patterns on the outcomes of various intervention strategies for influenza control in an LTCF. Methods. We collected contact frequency data in Canada’s largest veterans’ LTCF by enroling residents and staff into a study that tracked their movements through wireless tags and signal receivers. We analyzed and fitted the data to an agent-based simulation model of influenza infection, and performed Monte-Carlo simulations to evaluate the benefit of antiviral prophylaxis and patient isolation added to standard (baseline) infection control practice (i.e., vaccination of residents and staff, plus antiviral treatment of residents with symptomatic infection). Results. We calibrated the model to attack rates of 20%, 40%, and 60% for the baseline scenario. For data-driven movements, we found that the largest reduction in attack rates (12.5% to 27%; ANOVA P &lt; 0.001) was achieved when the baseline strategy was combined with antiviral prophylaxis for all residents for the duration of the outbreak. Isolation of residents with symptomatic infection resulted in little or no effect on the attack rates (2.3% to 4.2%; ANOVA P &gt; 0.2) among residents. In contrast, parameterizing the model with random movements yielded different results, suggesting that the highest benefit was achieved through patient isolation (69.6% to 79.6%; ANOVA P &lt; 0.001) while the additional benefit of prophylaxis was negligible in reducing the cumulative number of infections. Conclusions. Our study revealed a highly structured contact and movement patterns within the LTCF. Accounting for this structure—instead of assuming randomness—in decision analytic methods can result in substantially different predictions.</description><identifier>ISSN: 0272-989X</identifier><identifier>EISSN: 1552-681X</identifier><identifier>DOI: 10.1177/0272989X17708564</identifier><identifier>PMID: 28538110</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><subject>Aged ; Antiviral Agents - therapeutic use ; Contact Tracing ; Cross Infection - epidemiology ; Cross Infection - prevention &amp; control ; Cross Infection - transmission ; Disease Outbreaks - prevention &amp; control ; Humans ; Influenza, Human - epidemiology ; Influenza, Human - prevention &amp; control ; Influenza, Human - transmission ; Long-Term Care ; Middle Aged ; Models, Theoretical ; Monte Carlo Method ; Ontario - epidemiology ; Patient Isolation ; Patient Transfer ; Radio Waves</subject><ispartof>Medical decision making, 2017-11, Vol.37 (8), p.871-881</ispartof><rights>The Author(s) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-283737f447c54b846579bfd7b032d3386818b3dc5a82bac4fb6a7f454740bb183</citedby><cites>FETCH-LOGICAL-c445t-283737f447c54b846579bfd7b032d3386818b3dc5a82bac4fb6a7f454740bb183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0272989X17708564$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0272989X17708564$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21818,27923,27924,43620,43621</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28538110$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Najafi, Mehdi</creatorcontrib><creatorcontrib>Laskowski, Marek</creatorcontrib><creatorcontrib>de Boer, Pieter T.</creatorcontrib><creatorcontrib>Williams, Evelyn</creatorcontrib><creatorcontrib>Chit, Ayman</creatorcontrib><creatorcontrib>Moghadas, Seyed M.</creatorcontrib><title>The Effect of Individual Movements and Interventions on the Spread of Influenza in Long-Term Care Facilities</title><title>Medical decision making</title><addtitle>Med Decis Making</addtitle><description>Background. Nosocomial influenza poses a serious risk among residents of long-term care facilities (LTCFs). Objective. We sought to evaluate the effect of resident and staff movements and contact patterns on the outcomes of various intervention strategies for influenza control in an LTCF. Methods. We collected contact frequency data in Canada’s largest veterans’ LTCF by enroling residents and staff into a study that tracked their movements through wireless tags and signal receivers. We analyzed and fitted the data to an agent-based simulation model of influenza infection, and performed Monte-Carlo simulations to evaluate the benefit of antiviral prophylaxis and patient isolation added to standard (baseline) infection control practice (i.e., vaccination of residents and staff, plus antiviral treatment of residents with symptomatic infection). Results. We calibrated the model to attack rates of 20%, 40%, and 60% for the baseline scenario. For data-driven movements, we found that the largest reduction in attack rates (12.5% to 27%; ANOVA P &lt; 0.001) was achieved when the baseline strategy was combined with antiviral prophylaxis for all residents for the duration of the outbreak. Isolation of residents with symptomatic infection resulted in little or no effect on the attack rates (2.3% to 4.2%; ANOVA P &gt; 0.2) among residents. In contrast, parameterizing the model with random movements yielded different results, suggesting that the highest benefit was achieved through patient isolation (69.6% to 79.6%; ANOVA P &lt; 0.001) while the additional benefit of prophylaxis was negligible in reducing the cumulative number of infections. Conclusions. Our study revealed a highly structured contact and movement patterns within the LTCF. Accounting for this structure—instead of assuming randomness—in decision analytic methods can result in substantially different predictions.</description><subject>Aged</subject><subject>Antiviral Agents - therapeutic use</subject><subject>Contact Tracing</subject><subject>Cross Infection - epidemiology</subject><subject>Cross Infection - prevention &amp; control</subject><subject>Cross Infection - transmission</subject><subject>Disease Outbreaks - prevention &amp; control</subject><subject>Humans</subject><subject>Influenza, Human - epidemiology</subject><subject>Influenza, Human - prevention &amp; control</subject><subject>Influenza, Human - transmission</subject><subject>Long-Term Care</subject><subject>Middle Aged</subject><subject>Models, Theoretical</subject><subject>Monte Carlo Method</subject><subject>Ontario - epidemiology</subject><subject>Patient Isolation</subject><subject>Patient Transfer</subject><subject>Radio Waves</subject><issn>0272-989X</issn><issn>1552-681X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kM1LxDAQxYMoun7cPUmOXqpJk2zSoyx-LKx4cAVvJWknGmmTNWkX9K83y6oHwdPM8H7vwTyETim5oFTKS1LKslLVc96JElO-gyZUiLKYKvq8iyYbudjoB-gwpTdCKK8U30cHpRJMUUomqFu-Ar62FpoBB4vnvnVr1466w_dhDT34IWHt2ywMENf5dMEnHDwesu9xFUG3W5_tRvCfGjuPF8G_FEuIPZ7pCPhGN65zg4N0jPas7hKcfM8j9HRzvZzdFYuH2_nsalE0nIuhKBWTTFrOZSO4UXwqZGVsKw1hZcuYyt8pw9pGaFUa3XBrpjrjgktOjKGKHaHzbe4qhvcR0lD3LjXQddpDGFNNK1JyxYRiGSVbtIkhpQi2XkXX6_hRU1JvOq7_dpwtZ9_po-mh_TX8lJqBYgsk_QL1Wxijz9_-H_gFwGWDuQ</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Najafi, Mehdi</creator><creator>Laskowski, Marek</creator><creator>de Boer, Pieter T.</creator><creator>Williams, Evelyn</creator><creator>Chit, Ayman</creator><creator>Moghadas, Seyed M.</creator><general>SAGE Publications</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20171101</creationdate><title>The Effect of Individual Movements and Interventions on the Spread of Influenza in Long-Term Care Facilities</title><author>Najafi, Mehdi ; Laskowski, Marek ; de Boer, Pieter T. ; Williams, Evelyn ; Chit, Ayman ; Moghadas, Seyed M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-283737f447c54b846579bfd7b032d3386818b3dc5a82bac4fb6a7f454740bb183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aged</topic><topic>Antiviral Agents - therapeutic use</topic><topic>Contact Tracing</topic><topic>Cross Infection - epidemiology</topic><topic>Cross Infection - prevention &amp; control</topic><topic>Cross Infection - transmission</topic><topic>Disease Outbreaks - prevention &amp; control</topic><topic>Humans</topic><topic>Influenza, Human - epidemiology</topic><topic>Influenza, Human - prevention &amp; control</topic><topic>Influenza, Human - transmission</topic><topic>Long-Term Care</topic><topic>Middle Aged</topic><topic>Models, Theoretical</topic><topic>Monte Carlo Method</topic><topic>Ontario - epidemiology</topic><topic>Patient Isolation</topic><topic>Patient Transfer</topic><topic>Radio Waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Najafi, Mehdi</creatorcontrib><creatorcontrib>Laskowski, Marek</creatorcontrib><creatorcontrib>de Boer, Pieter T.</creatorcontrib><creatorcontrib>Williams, Evelyn</creatorcontrib><creatorcontrib>Chit, Ayman</creatorcontrib><creatorcontrib>Moghadas, Seyed M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Medical decision making</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Najafi, Mehdi</au><au>Laskowski, Marek</au><au>de Boer, Pieter T.</au><au>Williams, Evelyn</au><au>Chit, Ayman</au><au>Moghadas, Seyed M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Effect of Individual Movements and Interventions on the Spread of Influenza in Long-Term Care Facilities</atitle><jtitle>Medical decision making</jtitle><addtitle>Med Decis Making</addtitle><date>2017-11-01</date><risdate>2017</risdate><volume>37</volume><issue>8</issue><spage>871</spage><epage>881</epage><pages>871-881</pages><issn>0272-989X</issn><eissn>1552-681X</eissn><abstract>Background. Nosocomial influenza poses a serious risk among residents of long-term care facilities (LTCFs). Objective. We sought to evaluate the effect of resident and staff movements and contact patterns on the outcomes of various intervention strategies for influenza control in an LTCF. Methods. We collected contact frequency data in Canada’s largest veterans’ LTCF by enroling residents and staff into a study that tracked their movements through wireless tags and signal receivers. We analyzed and fitted the data to an agent-based simulation model of influenza infection, and performed Monte-Carlo simulations to evaluate the benefit of antiviral prophylaxis and patient isolation added to standard (baseline) infection control practice (i.e., vaccination of residents and staff, plus antiviral treatment of residents with symptomatic infection). Results. We calibrated the model to attack rates of 20%, 40%, and 60% for the baseline scenario. For data-driven movements, we found that the largest reduction in attack rates (12.5% to 27%; ANOVA P &lt; 0.001) was achieved when the baseline strategy was combined with antiviral prophylaxis for all residents for the duration of the outbreak. Isolation of residents with symptomatic infection resulted in little or no effect on the attack rates (2.3% to 4.2%; ANOVA P &gt; 0.2) among residents. In contrast, parameterizing the model with random movements yielded different results, suggesting that the highest benefit was achieved through patient isolation (69.6% to 79.6%; ANOVA P &lt; 0.001) while the additional benefit of prophylaxis was negligible in reducing the cumulative number of infections. Conclusions. Our study revealed a highly structured contact and movement patterns within the LTCF. Accounting for this structure—instead of assuming randomness—in decision analytic methods can result in substantially different predictions.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><pmid>28538110</pmid><doi>10.1177/0272989X17708564</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0272-989X
ispartof Medical decision making, 2017-11, Vol.37 (8), p.871-881
issn 0272-989X
1552-681X
language eng
recordid cdi_proquest_miscellaneous_1902483583
source MEDLINE; SAGE Complete A-Z List
subjects Aged
Antiviral Agents - therapeutic use
Contact Tracing
Cross Infection - epidemiology
Cross Infection - prevention & control
Cross Infection - transmission
Disease Outbreaks - prevention & control
Humans
Influenza, Human - epidemiology
Influenza, Human - prevention & control
Influenza, Human - transmission
Long-Term Care
Middle Aged
Models, Theoretical
Monte Carlo Method
Ontario - epidemiology
Patient Isolation
Patient Transfer
Radio Waves
title The Effect of Individual Movements and Interventions on the Spread of Influenza in Long-Term Care Facilities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T13%3A11%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Effect%20of%20Individual%20Movements%20and%20Interventions%20on%20the%20Spread%20of%20Influenza%20in%20Long-Term%20Care%20Facilities&rft.jtitle=Medical%20decision%20making&rft.au=Najafi,%20Mehdi&rft.date=2017-11-01&rft.volume=37&rft.issue=8&rft.spage=871&rft.epage=881&rft.pages=871-881&rft.issn=0272-989X&rft.eissn=1552-681X&rft_id=info:doi/10.1177/0272989X17708564&rft_dat=%3Cproquest_cross%3E1902483583%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1902483583&rft_id=info:pmid/28538110&rft_sage_id=10.1177_0272989X17708564&rfr_iscdi=true