Three-dimensional Printing of Silver Microarchitectures Using Newtonian Nanoparticle Inks

Although three-dimensional (3D) printing has recently emerged as a technology to potentially bring about the next industrial revolution, the limited selection of usable materials restricts its use to simple prototyping. In particular, metallic 3D printing with submicrometer spatial resolution is ess...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2017-06, Vol.9 (22), p.18918-18924
Hauptverfasser: Lee, Sanghyeon, Kim, Jung Hyun, Wajahat, Muhammad, Jeong, Hwakyung, Chang, Won Suk, Cho, Sung Ho, Kim, Ji Tae, Seol, Seung Kwon
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18924
container_issue 22
container_start_page 18918
container_title ACS applied materials & interfaces
container_volume 9
creator Lee, Sanghyeon
Kim, Jung Hyun
Wajahat, Muhammad
Jeong, Hwakyung
Chang, Won Suk
Cho, Sung Ho
Kim, Ji Tae
Seol, Seung Kwon
description Although three-dimensional (3D) printing has recently emerged as a technology to potentially bring about the next industrial revolution, the limited selection of usable materials restricts its use to simple prototyping. In particular, metallic 3D printing with submicrometer spatial resolution is essential for the realization of 3D-printed electronics. Herein, a meniscus-guided 3D printing method that exploits a low-viscosity (∼7 mPa·s) silver nanoparticle (AgNP) ink meniscus with Newtonian fluid characteristics (which is compatible with conventional inkjet printers) to fabricate 3D silver microarchitectures is reported. Poly­(acrylic acid)-capped AgNP ink that exhibits a continuous ink flow through a confined nozzle without aggregation is designed in this study. Guiding the ink meniscus with controlled direction and speed enables both vertical pulling and layer-by-layer processing, resulting in the creation of 3D microobjects with designed shapes other than those for simple wiring. Various highly conductive (>104 S·cm–1) 3D metallic patterns are demonstrated for applications in electronic devices. This research is expected to widen the range of materials that can be employed in 3D printing technology, with the aim of moving 3D printing beyond prototyping and into real manufacturing platforms for future electronics.
doi_str_mv 10.1021/acsami.7b02581
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1902482261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1902482261</sourcerecordid><originalsourceid>FETCH-LOGICAL-a396t-3528986e291fbc71121a5cacf04b93418a8192fea5c7336fea53038cbfadcba63</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRbK1ePUqOIqTuR5JujlL8KNQq2B48LZPtxG5NdutuovjvTWn15mmG4XlfmIeQc0aHjHJ2DTpAbYajgvJUsgPSZ3mSxJKn_PBvT5IeOQlhTWkmOE2PSY_LNGFUpH3yOl95xHhparTBOAtV9OyNbYx9i1wZvZjqE330aLR34PXKNKib1mOIFmGLzPCrcdaAjWZg3QZ8Y3SF0cS-h1NyVEIV8Gw_B2RxdzsfP8TTp_vJ-GYag8izJhYpl7nMkOesLPSIMc4g1aBLmhS5SJgEyXJeYnccCZFtF0GF1EUJS11AJgbkcte78e6jxdCo2gSNVQUWXRsUyylPJOcZ69DhDu2-CcFjqTbe1OC_FaNqq1PtdKq9zi5wse9uixqXf_ivvw642gFdUK1d6zuB4b-2H8gMgO0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1902482261</pqid></control><display><type>article</type><title>Three-dimensional Printing of Silver Microarchitectures Using Newtonian Nanoparticle Inks</title><source>ACS Publications</source><creator>Lee, Sanghyeon ; Kim, Jung Hyun ; Wajahat, Muhammad ; Jeong, Hwakyung ; Chang, Won Suk ; Cho, Sung Ho ; Kim, Ji Tae ; Seol, Seung Kwon</creator><creatorcontrib>Lee, Sanghyeon ; Kim, Jung Hyun ; Wajahat, Muhammad ; Jeong, Hwakyung ; Chang, Won Suk ; Cho, Sung Ho ; Kim, Ji Tae ; Seol, Seung Kwon</creatorcontrib><description>Although three-dimensional (3D) printing has recently emerged as a technology to potentially bring about the next industrial revolution, the limited selection of usable materials restricts its use to simple prototyping. In particular, metallic 3D printing with submicrometer spatial resolution is essential for the realization of 3D-printed electronics. Herein, a meniscus-guided 3D printing method that exploits a low-viscosity (∼7 mPa·s) silver nanoparticle (AgNP) ink meniscus with Newtonian fluid characteristics (which is compatible with conventional inkjet printers) to fabricate 3D silver microarchitectures is reported. Poly­(acrylic acid)-capped AgNP ink that exhibits a continuous ink flow through a confined nozzle without aggregation is designed in this study. Guiding the ink meniscus with controlled direction and speed enables both vertical pulling and layer-by-layer processing, resulting in the creation of 3D microobjects with designed shapes other than those for simple wiring. Various highly conductive (&gt;104 S·cm–1) 3D metallic patterns are demonstrated for applications in electronic devices. This research is expected to widen the range of materials that can be employed in 3D printing technology, with the aim of moving 3D printing beyond prototyping and into real manufacturing platforms for future electronics.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.7b02581</identifier><identifier>PMID: 28541035</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2017-06, Vol.9 (22), p.18918-18924</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a396t-3528986e291fbc71121a5cacf04b93418a8192fea5c7336fea53038cbfadcba63</citedby><cites>FETCH-LOGICAL-a396t-3528986e291fbc71121a5cacf04b93418a8192fea5c7336fea53038cbfadcba63</cites><orcidid>0000-0002-8733-4374</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.7b02581$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.7b02581$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28541035$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Sanghyeon</creatorcontrib><creatorcontrib>Kim, Jung Hyun</creatorcontrib><creatorcontrib>Wajahat, Muhammad</creatorcontrib><creatorcontrib>Jeong, Hwakyung</creatorcontrib><creatorcontrib>Chang, Won Suk</creatorcontrib><creatorcontrib>Cho, Sung Ho</creatorcontrib><creatorcontrib>Kim, Ji Tae</creatorcontrib><creatorcontrib>Seol, Seung Kwon</creatorcontrib><title>Three-dimensional Printing of Silver Microarchitectures Using Newtonian Nanoparticle Inks</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Although three-dimensional (3D) printing has recently emerged as a technology to potentially bring about the next industrial revolution, the limited selection of usable materials restricts its use to simple prototyping. In particular, metallic 3D printing with submicrometer spatial resolution is essential for the realization of 3D-printed electronics. Herein, a meniscus-guided 3D printing method that exploits a low-viscosity (∼7 mPa·s) silver nanoparticle (AgNP) ink meniscus with Newtonian fluid characteristics (which is compatible with conventional inkjet printers) to fabricate 3D silver microarchitectures is reported. Poly­(acrylic acid)-capped AgNP ink that exhibits a continuous ink flow through a confined nozzle without aggregation is designed in this study. Guiding the ink meniscus with controlled direction and speed enables both vertical pulling and layer-by-layer processing, resulting in the creation of 3D microobjects with designed shapes other than those for simple wiring. Various highly conductive (&gt;104 S·cm–1) 3D metallic patterns are demonstrated for applications in electronic devices. This research is expected to widen the range of materials that can be employed in 3D printing technology, with the aim of moving 3D printing beyond prototyping and into real manufacturing platforms for future electronics.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE1Lw0AQhhdRbK1ePUqOIqTuR5JujlL8KNQq2B48LZPtxG5NdutuovjvTWn15mmG4XlfmIeQc0aHjHJ2DTpAbYajgvJUsgPSZ3mSxJKn_PBvT5IeOQlhTWkmOE2PSY_LNGFUpH3yOl95xHhparTBOAtV9OyNbYx9i1wZvZjqE330aLR34PXKNKib1mOIFmGLzPCrcdaAjWZg3QZ8Y3SF0cS-h1NyVEIV8Gw_B2RxdzsfP8TTp_vJ-GYag8izJhYpl7nMkOesLPSIMc4g1aBLmhS5SJgEyXJeYnccCZFtF0GF1EUJS11AJgbkcte78e6jxdCo2gSNVQUWXRsUyylPJOcZ69DhDu2-CcFjqTbe1OC_FaNqq1PtdKq9zi5wse9uixqXf_ivvw642gFdUK1d6zuB4b-2H8gMgO0</recordid><startdate>20170607</startdate><enddate>20170607</enddate><creator>Lee, Sanghyeon</creator><creator>Kim, Jung Hyun</creator><creator>Wajahat, Muhammad</creator><creator>Jeong, Hwakyung</creator><creator>Chang, Won Suk</creator><creator>Cho, Sung Ho</creator><creator>Kim, Ji Tae</creator><creator>Seol, Seung Kwon</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8733-4374</orcidid></search><sort><creationdate>20170607</creationdate><title>Three-dimensional Printing of Silver Microarchitectures Using Newtonian Nanoparticle Inks</title><author>Lee, Sanghyeon ; Kim, Jung Hyun ; Wajahat, Muhammad ; Jeong, Hwakyung ; Chang, Won Suk ; Cho, Sung Ho ; Kim, Ji Tae ; Seol, Seung Kwon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a396t-3528986e291fbc71121a5cacf04b93418a8192fea5c7336fea53038cbfadcba63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Sanghyeon</creatorcontrib><creatorcontrib>Kim, Jung Hyun</creatorcontrib><creatorcontrib>Wajahat, Muhammad</creatorcontrib><creatorcontrib>Jeong, Hwakyung</creatorcontrib><creatorcontrib>Chang, Won Suk</creatorcontrib><creatorcontrib>Cho, Sung Ho</creatorcontrib><creatorcontrib>Kim, Ji Tae</creatorcontrib><creatorcontrib>Seol, Seung Kwon</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Sanghyeon</au><au>Kim, Jung Hyun</au><au>Wajahat, Muhammad</au><au>Jeong, Hwakyung</au><au>Chang, Won Suk</au><au>Cho, Sung Ho</au><au>Kim, Ji Tae</au><au>Seol, Seung Kwon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-dimensional Printing of Silver Microarchitectures Using Newtonian Nanoparticle Inks</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2017-06-07</date><risdate>2017</risdate><volume>9</volume><issue>22</issue><spage>18918</spage><epage>18924</epage><pages>18918-18924</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Although three-dimensional (3D) printing has recently emerged as a technology to potentially bring about the next industrial revolution, the limited selection of usable materials restricts its use to simple prototyping. In particular, metallic 3D printing with submicrometer spatial resolution is essential for the realization of 3D-printed electronics. Herein, a meniscus-guided 3D printing method that exploits a low-viscosity (∼7 mPa·s) silver nanoparticle (AgNP) ink meniscus with Newtonian fluid characteristics (which is compatible with conventional inkjet printers) to fabricate 3D silver microarchitectures is reported. Poly­(acrylic acid)-capped AgNP ink that exhibits a continuous ink flow through a confined nozzle without aggregation is designed in this study. Guiding the ink meniscus with controlled direction and speed enables both vertical pulling and layer-by-layer processing, resulting in the creation of 3D microobjects with designed shapes other than those for simple wiring. Various highly conductive (&gt;104 S·cm–1) 3D metallic patterns are demonstrated for applications in electronic devices. This research is expected to widen the range of materials that can be employed in 3D printing technology, with the aim of moving 3D printing beyond prototyping and into real manufacturing platforms for future electronics.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28541035</pmid><doi>10.1021/acsami.7b02581</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-8733-4374</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2017-06, Vol.9 (22), p.18918-18924
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_1902482261
source ACS Publications
title Three-dimensional Printing of Silver Microarchitectures Using Newtonian Nanoparticle Inks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T03%3A30%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-dimensional%20Printing%20of%20Silver%20Microarchitectures%20Using%20Newtonian%20Nanoparticle%20Inks&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Lee,%20Sanghyeon&rft.date=2017-06-07&rft.volume=9&rft.issue=22&rft.spage=18918&rft.epage=18924&rft.pages=18918-18924&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.7b02581&rft_dat=%3Cproquest_cross%3E1902482261%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1902482261&rft_id=info:pmid/28541035&rfr_iscdi=true