Syntrophic association and performance of Clostridium, Desulfovibrio, Aeromonas and Tetrathiobacter as anodic biocatalysts for bioelectricity generation in dual chamber microbial fuel cell

Anode chamber of a dual chamber microbial fuel cell (MFC) having raw landfill leachate was inoculated with consortium of sulphate-reducing bacteria (SRB) and sulphide-oxidizing bacteria (SOB) to study the phylogenetic architecture, function and mutualism of anolyte community developed in the reactor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science and pollution research international 2017-07, Vol.24 (19), p.16019-16030
Hauptverfasser: Kumar, Smita S., Malyan, Sandeep K., Basu, Suddhasatwa, Bishnoi, Narsi R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16030
container_issue 19
container_start_page 16019
container_title Environmental science and pollution research international
container_volume 24
creator Kumar, Smita S.
Malyan, Sandeep K.
Basu, Suddhasatwa
Bishnoi, Narsi R
description Anode chamber of a dual chamber microbial fuel cell (MFC) having raw landfill leachate was inoculated with consortium of sulphate-reducing bacteria (SRB) and sulphide-oxidizing bacteria (SOB) to study the phylogenetic architecture, function and mutualism of anolyte community developed in the reactor. Enriched microbial community was analysed with the help of Illumina MiSeq and indicated the dominance of Firmicutes (41.4%), Clostridia (36.4%) and Clostridium (12.9%) at phylum, class and genus level, respectively. Clostridium was associated with fermentation as well as transfer of electrons to the electrode mediated by ferredoxin. Desulfovibrio (6.7%), Aeromonas (6.6%) and Tetrathiobacter (9.8%) were SRB-SOB associated with direct electron transfer to the electrode. Community analysis disclosed a syntrophic association among novel Firmicutes and Proteobacteria species for bioelectricity generation and degradation of organic matter. Complete removal of chemical oxygen demand was observed from landfill leachate within 3 days of inoculation. Lower oxidative slope and polarization resistance revealed from Tafel analysis backed the feasibility of electron transfer from microbes to anodic electrode and thus development of efficient anode-respiring community. Following enrichment and stabilization of the anodic community, maximum power density achieved was 9.15 W/m 3 and volumetric current density was 16.17 A/m 3 . Simultaneous feeding with SRB-SOB and landfill leachate led to the enrichment of a novel, mutually interdependent microbial community capable of synchronized bioremediation of effluents rich in carbon, sulphate, nitrate and aromatic compounds.
doi_str_mv 10.1007/s11356-017-9112-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1902114333</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1902114333</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-37cb707b2beaf3312418b7287057605040e5709169ae700d6f4e5edca28d00d23</originalsourceid><addsrcrecordid>eNp1UcFu1DAUtBCIbhc-gAuyxIVDA8-Os46P1QIFqRIHyjmynZeuq8RebKfS_hsfh9MUhJDwxfJ4Zt48DSGvGLxjAPJ9YqxudhUwWSnGeCWekA3bMVFJodRTsgElRMVqIc7IeUp3ABwUl8_JGW-bWgJrN-Tnt5PPMRwPzlKdUrBOZxc81b6nR4xDiJP2FmkY6H4MKUfXu3m6oB8wzeMQ7p2JLlzQS4xhCl6nB-EN5qjzwQWjbcZIH-DQlxHGBauzHk8pJ1rMFwBHtMXXunyit-gxrgmcp_2sR2oPejLFZHI2BuMKMsxYYBzHF-TZoMeELx_vLfn-6ePN_nN1_fXqy_7yurJCNrmqpTUSpOEG9VDXjAvWGslbCY3cQQMCsJGg2E5plAD9bhDYYG81b_vy5PWWvF19jzH8mDHlbnJpCaA9hjl1TAFnTNTlbMmbf6h3YY6-pCss1nKlABYWW1llpZQiDt0xuknHU8egW6rt1mq7Um23VNuJonn96DybCfs_it9dFgJfCal8-VuMf43-r-svHbWyXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1918299003</pqid></control><display><type>article</type><title>Syntrophic association and performance of Clostridium, Desulfovibrio, Aeromonas and Tetrathiobacter as anodic biocatalysts for bioelectricity generation in dual chamber microbial fuel cell</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Kumar, Smita S. ; Malyan, Sandeep K. ; Basu, Suddhasatwa ; Bishnoi, Narsi R</creator><creatorcontrib>Kumar, Smita S. ; Malyan, Sandeep K. ; Basu, Suddhasatwa ; Bishnoi, Narsi R</creatorcontrib><description>Anode chamber of a dual chamber microbial fuel cell (MFC) having raw landfill leachate was inoculated with consortium of sulphate-reducing bacteria (SRB) and sulphide-oxidizing bacteria (SOB) to study the phylogenetic architecture, function and mutualism of anolyte community developed in the reactor. Enriched microbial community was analysed with the help of Illumina MiSeq and indicated the dominance of Firmicutes (41.4%), Clostridia (36.4%) and Clostridium (12.9%) at phylum, class and genus level, respectively. Clostridium was associated with fermentation as well as transfer of electrons to the electrode mediated by ferredoxin. Desulfovibrio (6.7%), Aeromonas (6.6%) and Tetrathiobacter (9.8%) were SRB-SOB associated with direct electron transfer to the electrode. Community analysis disclosed a syntrophic association among novel Firmicutes and Proteobacteria species for bioelectricity generation and degradation of organic matter. Complete removal of chemical oxygen demand was observed from landfill leachate within 3 days of inoculation. Lower oxidative slope and polarization resistance revealed from Tafel analysis backed the feasibility of electron transfer from microbes to anodic electrode and thus development of efficient anode-respiring community. Following enrichment and stabilization of the anodic community, maximum power density achieved was 9.15 W/m 3 and volumetric current density was 16.17 A/m 3 . Simultaneous feeding with SRB-SOB and landfill leachate led to the enrichment of a novel, mutually interdependent microbial community capable of synchronized bioremediation of effluents rich in carbon, sulphate, nitrate and aromatic compounds.</description><identifier>ISSN: 0944-1344</identifier><identifier>EISSN: 1614-7499</identifier><identifier>DOI: 10.1007/s11356-017-9112-4</identifier><identifier>PMID: 28537018</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aeromonas ; Anodes ; Anolytes ; Aquatic Pollution ; Architecture ; Aromatic compounds ; Atmospheric Protection/Air Quality Control/Air Pollution ; Bacterial leaching ; Biocatalysts ; Biodegradation ; Bioelectric Energy Sources ; Bioelectricity ; Bioremediation ; Carbon ; Chemical oxygen demand ; Clostridium ; Communities ; Consortia ; Current density ; Desulfovibrio ; Earth and Environmental Science ; Ecotoxicology ; Effluents ; Electrodes ; Electron transfer ; Environment ; Environmental Chemistry ; Environmental Health ; Environmental science ; Feasibility studies ; Fermentation ; Ferredoxin ; Fuel cells ; Fuel technology ; Inoculation ; Landfill ; Landfills ; Leachates ; Mutualism ; Nitrates ; Nuclear fuels ; Organic matter ; Oxidation ; Phylogeny ; Polarization ; Research Article ; Stabilization ; Sulfate reduction ; Sulfates ; Sulfides ; Tetrathiobacter ; Waste disposal sites ; Waste Water Technology ; Water Management ; Water Pollution Control</subject><ispartof>Environmental science and pollution research international, 2017-07, Vol.24 (19), p.16019-16030</ispartof><rights>Springer-Verlag Berlin Heidelberg 2017</rights><rights>Environmental Science and Pollution Research is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-37cb707b2beaf3312418b7287057605040e5709169ae700d6f4e5edca28d00d23</citedby><cites>FETCH-LOGICAL-c475t-37cb707b2beaf3312418b7287057605040e5709169ae700d6f4e5edca28d00d23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11356-017-9112-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11356-017-9112-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28537018$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kumar, Smita S.</creatorcontrib><creatorcontrib>Malyan, Sandeep K.</creatorcontrib><creatorcontrib>Basu, Suddhasatwa</creatorcontrib><creatorcontrib>Bishnoi, Narsi R</creatorcontrib><title>Syntrophic association and performance of Clostridium, Desulfovibrio, Aeromonas and Tetrathiobacter as anodic biocatalysts for bioelectricity generation in dual chamber microbial fuel cell</title><title>Environmental science and pollution research international</title><addtitle>Environ Sci Pollut Res</addtitle><addtitle>Environ Sci Pollut Res Int</addtitle><description>Anode chamber of a dual chamber microbial fuel cell (MFC) having raw landfill leachate was inoculated with consortium of sulphate-reducing bacteria (SRB) and sulphide-oxidizing bacteria (SOB) to study the phylogenetic architecture, function and mutualism of anolyte community developed in the reactor. Enriched microbial community was analysed with the help of Illumina MiSeq and indicated the dominance of Firmicutes (41.4%), Clostridia (36.4%) and Clostridium (12.9%) at phylum, class and genus level, respectively. Clostridium was associated with fermentation as well as transfer of electrons to the electrode mediated by ferredoxin. Desulfovibrio (6.7%), Aeromonas (6.6%) and Tetrathiobacter (9.8%) were SRB-SOB associated with direct electron transfer to the electrode. Community analysis disclosed a syntrophic association among novel Firmicutes and Proteobacteria species for bioelectricity generation and degradation of organic matter. Complete removal of chemical oxygen demand was observed from landfill leachate within 3 days of inoculation. Lower oxidative slope and polarization resistance revealed from Tafel analysis backed the feasibility of electron transfer from microbes to anodic electrode and thus development of efficient anode-respiring community. Following enrichment and stabilization of the anodic community, maximum power density achieved was 9.15 W/m 3 and volumetric current density was 16.17 A/m 3 . Simultaneous feeding with SRB-SOB and landfill leachate led to the enrichment of a novel, mutually interdependent microbial community capable of synchronized bioremediation of effluents rich in carbon, sulphate, nitrate and aromatic compounds.</description><subject>Aeromonas</subject><subject>Anodes</subject><subject>Anolytes</subject><subject>Aquatic Pollution</subject><subject>Architecture</subject><subject>Aromatic compounds</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Bacterial leaching</subject><subject>Biocatalysts</subject><subject>Biodegradation</subject><subject>Bioelectric Energy Sources</subject><subject>Bioelectricity</subject><subject>Bioremediation</subject><subject>Carbon</subject><subject>Chemical oxygen demand</subject><subject>Clostridium</subject><subject>Communities</subject><subject>Consortia</subject><subject>Current density</subject><subject>Desulfovibrio</subject><subject>Earth and Environmental Science</subject><subject>Ecotoxicology</subject><subject>Effluents</subject><subject>Electrodes</subject><subject>Electron transfer</subject><subject>Environment</subject><subject>Environmental Chemistry</subject><subject>Environmental Health</subject><subject>Environmental science</subject><subject>Feasibility studies</subject><subject>Fermentation</subject><subject>Ferredoxin</subject><subject>Fuel cells</subject><subject>Fuel technology</subject><subject>Inoculation</subject><subject>Landfill</subject><subject>Landfills</subject><subject>Leachates</subject><subject>Mutualism</subject><subject>Nitrates</subject><subject>Nuclear fuels</subject><subject>Organic matter</subject><subject>Oxidation</subject><subject>Phylogeny</subject><subject>Polarization</subject><subject>Research Article</subject><subject>Stabilization</subject><subject>Sulfate reduction</subject><subject>Sulfates</subject><subject>Sulfides</subject><subject>Tetrathiobacter</subject><subject>Waste disposal sites</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><issn>0944-1344</issn><issn>1614-7499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UcFu1DAUtBCIbhc-gAuyxIVDA8-Os46P1QIFqRIHyjmynZeuq8RebKfS_hsfh9MUhJDwxfJ4Zt48DSGvGLxjAPJ9YqxudhUwWSnGeCWekA3bMVFJodRTsgElRMVqIc7IeUp3ABwUl8_JGW-bWgJrN-Tnt5PPMRwPzlKdUrBOZxc81b6nR4xDiJP2FmkY6H4MKUfXu3m6oB8wzeMQ7p2JLlzQS4xhCl6nB-EN5qjzwQWjbcZIH-DQlxHGBauzHk8pJ1rMFwBHtMXXunyit-gxrgmcp_2sR2oPejLFZHI2BuMKMsxYYBzHF-TZoMeELx_vLfn-6ePN_nN1_fXqy_7yurJCNrmqpTUSpOEG9VDXjAvWGslbCY3cQQMCsJGg2E5plAD9bhDYYG81b_vy5PWWvF19jzH8mDHlbnJpCaA9hjl1TAFnTNTlbMmbf6h3YY6-pCss1nKlABYWW1llpZQiDt0xuknHU8egW6rt1mq7Um23VNuJonn96DybCfs_it9dFgJfCal8-VuMf43-r-svHbWyXg</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Kumar, Smita S.</creator><creator>Malyan, Sandeep K.</creator><creator>Basu, Suddhasatwa</creator><creator>Bishnoi, Narsi R</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7T7</scope><scope>7TV</scope><scope>7U7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>P64</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20170701</creationdate><title>Syntrophic association and performance of Clostridium, Desulfovibrio, Aeromonas and Tetrathiobacter as anodic biocatalysts for bioelectricity generation in dual chamber microbial fuel cell</title><author>Kumar, Smita S. ; Malyan, Sandeep K. ; Basu, Suddhasatwa ; Bishnoi, Narsi R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-37cb707b2beaf3312418b7287057605040e5709169ae700d6f4e5edca28d00d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aeromonas</topic><topic>Anodes</topic><topic>Anolytes</topic><topic>Aquatic Pollution</topic><topic>Architecture</topic><topic>Aromatic compounds</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Bacterial leaching</topic><topic>Biocatalysts</topic><topic>Biodegradation</topic><topic>Bioelectric Energy Sources</topic><topic>Bioelectricity</topic><topic>Bioremediation</topic><topic>Carbon</topic><topic>Chemical oxygen demand</topic><topic>Clostridium</topic><topic>Communities</topic><topic>Consortia</topic><topic>Current density</topic><topic>Desulfovibrio</topic><topic>Earth and Environmental Science</topic><topic>Ecotoxicology</topic><topic>Effluents</topic><topic>Electrodes</topic><topic>Electron transfer</topic><topic>Environment</topic><topic>Environmental Chemistry</topic><topic>Environmental Health</topic><topic>Environmental science</topic><topic>Feasibility studies</topic><topic>Fermentation</topic><topic>Ferredoxin</topic><topic>Fuel cells</topic><topic>Fuel technology</topic><topic>Inoculation</topic><topic>Landfill</topic><topic>Landfills</topic><topic>Leachates</topic><topic>Mutualism</topic><topic>Nitrates</topic><topic>Nuclear fuels</topic><topic>Organic matter</topic><topic>Oxidation</topic><topic>Phylogeny</topic><topic>Polarization</topic><topic>Research Article</topic><topic>Stabilization</topic><topic>Sulfate reduction</topic><topic>Sulfates</topic><topic>Sulfides</topic><topic>Tetrathiobacter</topic><topic>Waste disposal sites</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Smita S.</creatorcontrib><creatorcontrib>Malyan, Sandeep K.</creatorcontrib><creatorcontrib>Basu, Suddhasatwa</creatorcontrib><creatorcontrib>Bishnoi, Narsi R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science and pollution research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Smita S.</au><au>Malyan, Sandeep K.</au><au>Basu, Suddhasatwa</au><au>Bishnoi, Narsi R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Syntrophic association and performance of Clostridium, Desulfovibrio, Aeromonas and Tetrathiobacter as anodic biocatalysts for bioelectricity generation in dual chamber microbial fuel cell</atitle><jtitle>Environmental science and pollution research international</jtitle><stitle>Environ Sci Pollut Res</stitle><addtitle>Environ Sci Pollut Res Int</addtitle><date>2017-07-01</date><risdate>2017</risdate><volume>24</volume><issue>19</issue><spage>16019</spage><epage>16030</epage><pages>16019-16030</pages><issn>0944-1344</issn><eissn>1614-7499</eissn><abstract>Anode chamber of a dual chamber microbial fuel cell (MFC) having raw landfill leachate was inoculated with consortium of sulphate-reducing bacteria (SRB) and sulphide-oxidizing bacteria (SOB) to study the phylogenetic architecture, function and mutualism of anolyte community developed in the reactor. Enriched microbial community was analysed with the help of Illumina MiSeq and indicated the dominance of Firmicutes (41.4%), Clostridia (36.4%) and Clostridium (12.9%) at phylum, class and genus level, respectively. Clostridium was associated with fermentation as well as transfer of electrons to the electrode mediated by ferredoxin. Desulfovibrio (6.7%), Aeromonas (6.6%) and Tetrathiobacter (9.8%) were SRB-SOB associated with direct electron transfer to the electrode. Community analysis disclosed a syntrophic association among novel Firmicutes and Proteobacteria species for bioelectricity generation and degradation of organic matter. Complete removal of chemical oxygen demand was observed from landfill leachate within 3 days of inoculation. Lower oxidative slope and polarization resistance revealed from Tafel analysis backed the feasibility of electron transfer from microbes to anodic electrode and thus development of efficient anode-respiring community. Following enrichment and stabilization of the anodic community, maximum power density achieved was 9.15 W/m 3 and volumetric current density was 16.17 A/m 3 . Simultaneous feeding with SRB-SOB and landfill leachate led to the enrichment of a novel, mutually interdependent microbial community capable of synchronized bioremediation of effluents rich in carbon, sulphate, nitrate and aromatic compounds.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>28537018</pmid><doi>10.1007/s11356-017-9112-4</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0944-1344
ispartof Environmental science and pollution research international, 2017-07, Vol.24 (19), p.16019-16030
issn 0944-1344
1614-7499
language eng
recordid cdi_proquest_miscellaneous_1902114333
source MEDLINE; SpringerLink Journals
subjects Aeromonas
Anodes
Anolytes
Aquatic Pollution
Architecture
Aromatic compounds
Atmospheric Protection/Air Quality Control/Air Pollution
Bacterial leaching
Biocatalysts
Biodegradation
Bioelectric Energy Sources
Bioelectricity
Bioremediation
Carbon
Chemical oxygen demand
Clostridium
Communities
Consortia
Current density
Desulfovibrio
Earth and Environmental Science
Ecotoxicology
Effluents
Electrodes
Electron transfer
Environment
Environmental Chemistry
Environmental Health
Environmental science
Feasibility studies
Fermentation
Ferredoxin
Fuel cells
Fuel technology
Inoculation
Landfill
Landfills
Leachates
Mutualism
Nitrates
Nuclear fuels
Organic matter
Oxidation
Phylogeny
Polarization
Research Article
Stabilization
Sulfate reduction
Sulfates
Sulfides
Tetrathiobacter
Waste disposal sites
Waste Water Technology
Water Management
Water Pollution Control
title Syntrophic association and performance of Clostridium, Desulfovibrio, Aeromonas and Tetrathiobacter as anodic biocatalysts for bioelectricity generation in dual chamber microbial fuel cell
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T05%3A24%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Syntrophic%20association%20and%20performance%20of%20Clostridium,%20Desulfovibrio,%20Aeromonas%20and%20Tetrathiobacter%20as%20anodic%20biocatalysts%20for%20bioelectricity%20generation%20in%20dual%20chamber%20microbial%20fuel%20cell&rft.jtitle=Environmental%20science%20and%20pollution%20research%20international&rft.au=Kumar,%20Smita%20S.&rft.date=2017-07-01&rft.volume=24&rft.issue=19&rft.spage=16019&rft.epage=16030&rft.pages=16019-16030&rft.issn=0944-1344&rft.eissn=1614-7499&rft_id=info:doi/10.1007/s11356-017-9112-4&rft_dat=%3Cproquest_cross%3E1902114333%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1918299003&rft_id=info:pmid/28537018&rfr_iscdi=true