Syntrophic association and performance of Clostridium, Desulfovibrio, Aeromonas and Tetrathiobacter as anodic biocatalysts for bioelectricity generation in dual chamber microbial fuel cell
Anode chamber of a dual chamber microbial fuel cell (MFC) having raw landfill leachate was inoculated with consortium of sulphate-reducing bacteria (SRB) and sulphide-oxidizing bacteria (SOB) to study the phylogenetic architecture, function and mutualism of anolyte community developed in the reactor...
Gespeichert in:
Veröffentlicht in: | Environmental science and pollution research international 2017-07, Vol.24 (19), p.16019-16030 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16030 |
---|---|
container_issue | 19 |
container_start_page | 16019 |
container_title | Environmental science and pollution research international |
container_volume | 24 |
creator | Kumar, Smita S. Malyan, Sandeep K. Basu, Suddhasatwa Bishnoi, Narsi R |
description | Anode chamber of a dual chamber microbial fuel cell (MFC) having raw landfill leachate was inoculated with consortium of sulphate-reducing bacteria (SRB) and sulphide-oxidizing bacteria (SOB) to study the phylogenetic architecture, function and mutualism of anolyte community developed in the reactor. Enriched microbial community was analysed with the help of Illumina MiSeq and indicated the dominance of Firmicutes (41.4%), Clostridia (36.4%) and
Clostridium
(12.9%) at phylum, class and genus level, respectively.
Clostridium
was associated with fermentation as well as transfer of electrons to the electrode mediated by ferredoxin.
Desulfovibrio
(6.7%),
Aeromonas
(6.6%) and
Tetrathiobacter
(9.8%) were SRB-SOB associated with direct electron transfer to the electrode. Community analysis disclosed a syntrophic association among novel Firmicutes and Proteobacteria species for bioelectricity generation and degradation of organic matter. Complete removal of chemical oxygen demand was observed from landfill leachate within 3 days of inoculation. Lower oxidative slope and polarization resistance revealed from Tafel analysis backed the feasibility of electron transfer from microbes to anodic electrode and thus development of efficient anode-respiring community. Following enrichment and stabilization of the anodic community, maximum power density achieved was 9.15 W/m
3
and volumetric current density was 16.17 A/m
3
. Simultaneous feeding with SRB-SOB and landfill leachate led to the enrichment of a novel, mutually interdependent microbial community capable of synchronized bioremediation of effluents rich in carbon, sulphate, nitrate and aromatic compounds. |
doi_str_mv | 10.1007/s11356-017-9112-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1902114333</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1902114333</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-37cb707b2beaf3312418b7287057605040e5709169ae700d6f4e5edca28d00d23</originalsourceid><addsrcrecordid>eNp1UcFu1DAUtBCIbhc-gAuyxIVDA8-Os46P1QIFqRIHyjmynZeuq8RebKfS_hsfh9MUhJDwxfJ4Zt48DSGvGLxjAPJ9YqxudhUwWSnGeCWekA3bMVFJodRTsgElRMVqIc7IeUp3ABwUl8_JGW-bWgJrN-Tnt5PPMRwPzlKdUrBOZxc81b6nR4xDiJP2FmkY6H4MKUfXu3m6oB8wzeMQ7p2JLlzQS4xhCl6nB-EN5qjzwQWjbcZIH-DQlxHGBauzHk8pJ1rMFwBHtMXXunyit-gxrgmcp_2sR2oPejLFZHI2BuMKMsxYYBzHF-TZoMeELx_vLfn-6ePN_nN1_fXqy_7yurJCNrmqpTUSpOEG9VDXjAvWGslbCY3cQQMCsJGg2E5plAD9bhDYYG81b_vy5PWWvF19jzH8mDHlbnJpCaA9hjl1TAFnTNTlbMmbf6h3YY6-pCss1nKlABYWW1llpZQiDt0xuknHU8egW6rt1mq7Um23VNuJonn96DybCfs_it9dFgJfCal8-VuMf43-r-svHbWyXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1918299003</pqid></control><display><type>article</type><title>Syntrophic association and performance of Clostridium, Desulfovibrio, Aeromonas and Tetrathiobacter as anodic biocatalysts for bioelectricity generation in dual chamber microbial fuel cell</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Kumar, Smita S. ; Malyan, Sandeep K. ; Basu, Suddhasatwa ; Bishnoi, Narsi R</creator><creatorcontrib>Kumar, Smita S. ; Malyan, Sandeep K. ; Basu, Suddhasatwa ; Bishnoi, Narsi R</creatorcontrib><description>Anode chamber of a dual chamber microbial fuel cell (MFC) having raw landfill leachate was inoculated with consortium of sulphate-reducing bacteria (SRB) and sulphide-oxidizing bacteria (SOB) to study the phylogenetic architecture, function and mutualism of anolyte community developed in the reactor. Enriched microbial community was analysed with the help of Illumina MiSeq and indicated the dominance of Firmicutes (41.4%), Clostridia (36.4%) and
Clostridium
(12.9%) at phylum, class and genus level, respectively.
Clostridium
was associated with fermentation as well as transfer of electrons to the electrode mediated by ferredoxin.
Desulfovibrio
(6.7%),
Aeromonas
(6.6%) and
Tetrathiobacter
(9.8%) were SRB-SOB associated with direct electron transfer to the electrode. Community analysis disclosed a syntrophic association among novel Firmicutes and Proteobacteria species for bioelectricity generation and degradation of organic matter. Complete removal of chemical oxygen demand was observed from landfill leachate within 3 days of inoculation. Lower oxidative slope and polarization resistance revealed from Tafel analysis backed the feasibility of electron transfer from microbes to anodic electrode and thus development of efficient anode-respiring community. Following enrichment and stabilization of the anodic community, maximum power density achieved was 9.15 W/m
3
and volumetric current density was 16.17 A/m
3
. Simultaneous feeding with SRB-SOB and landfill leachate led to the enrichment of a novel, mutually interdependent microbial community capable of synchronized bioremediation of effluents rich in carbon, sulphate, nitrate and aromatic compounds.</description><identifier>ISSN: 0944-1344</identifier><identifier>EISSN: 1614-7499</identifier><identifier>DOI: 10.1007/s11356-017-9112-4</identifier><identifier>PMID: 28537018</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aeromonas ; Anodes ; Anolytes ; Aquatic Pollution ; Architecture ; Aromatic compounds ; Atmospheric Protection/Air Quality Control/Air Pollution ; Bacterial leaching ; Biocatalysts ; Biodegradation ; Bioelectric Energy Sources ; Bioelectricity ; Bioremediation ; Carbon ; Chemical oxygen demand ; Clostridium ; Communities ; Consortia ; Current density ; Desulfovibrio ; Earth and Environmental Science ; Ecotoxicology ; Effluents ; Electrodes ; Electron transfer ; Environment ; Environmental Chemistry ; Environmental Health ; Environmental science ; Feasibility studies ; Fermentation ; Ferredoxin ; Fuel cells ; Fuel technology ; Inoculation ; Landfill ; Landfills ; Leachates ; Mutualism ; Nitrates ; Nuclear fuels ; Organic matter ; Oxidation ; Phylogeny ; Polarization ; Research Article ; Stabilization ; Sulfate reduction ; Sulfates ; Sulfides ; Tetrathiobacter ; Waste disposal sites ; Waste Water Technology ; Water Management ; Water Pollution Control</subject><ispartof>Environmental science and pollution research international, 2017-07, Vol.24 (19), p.16019-16030</ispartof><rights>Springer-Verlag Berlin Heidelberg 2017</rights><rights>Environmental Science and Pollution Research is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-37cb707b2beaf3312418b7287057605040e5709169ae700d6f4e5edca28d00d23</citedby><cites>FETCH-LOGICAL-c475t-37cb707b2beaf3312418b7287057605040e5709169ae700d6f4e5edca28d00d23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11356-017-9112-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11356-017-9112-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28537018$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kumar, Smita S.</creatorcontrib><creatorcontrib>Malyan, Sandeep K.</creatorcontrib><creatorcontrib>Basu, Suddhasatwa</creatorcontrib><creatorcontrib>Bishnoi, Narsi R</creatorcontrib><title>Syntrophic association and performance of Clostridium, Desulfovibrio, Aeromonas and Tetrathiobacter as anodic biocatalysts for bioelectricity generation in dual chamber microbial fuel cell</title><title>Environmental science and pollution research international</title><addtitle>Environ Sci Pollut Res</addtitle><addtitle>Environ Sci Pollut Res Int</addtitle><description>Anode chamber of a dual chamber microbial fuel cell (MFC) having raw landfill leachate was inoculated with consortium of sulphate-reducing bacteria (SRB) and sulphide-oxidizing bacteria (SOB) to study the phylogenetic architecture, function and mutualism of anolyte community developed in the reactor. Enriched microbial community was analysed with the help of Illumina MiSeq and indicated the dominance of Firmicutes (41.4%), Clostridia (36.4%) and
Clostridium
(12.9%) at phylum, class and genus level, respectively.
Clostridium
was associated with fermentation as well as transfer of electrons to the electrode mediated by ferredoxin.
Desulfovibrio
(6.7%),
Aeromonas
(6.6%) and
Tetrathiobacter
(9.8%) were SRB-SOB associated with direct electron transfer to the electrode. Community analysis disclosed a syntrophic association among novel Firmicutes and Proteobacteria species for bioelectricity generation and degradation of organic matter. Complete removal of chemical oxygen demand was observed from landfill leachate within 3 days of inoculation. Lower oxidative slope and polarization resistance revealed from Tafel analysis backed the feasibility of electron transfer from microbes to anodic electrode and thus development of efficient anode-respiring community. Following enrichment and stabilization of the anodic community, maximum power density achieved was 9.15 W/m
3
and volumetric current density was 16.17 A/m
3
. Simultaneous feeding with SRB-SOB and landfill leachate led to the enrichment of a novel, mutually interdependent microbial community capable of synchronized bioremediation of effluents rich in carbon, sulphate, nitrate and aromatic compounds.</description><subject>Aeromonas</subject><subject>Anodes</subject><subject>Anolytes</subject><subject>Aquatic Pollution</subject><subject>Architecture</subject><subject>Aromatic compounds</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Bacterial leaching</subject><subject>Biocatalysts</subject><subject>Biodegradation</subject><subject>Bioelectric Energy Sources</subject><subject>Bioelectricity</subject><subject>Bioremediation</subject><subject>Carbon</subject><subject>Chemical oxygen demand</subject><subject>Clostridium</subject><subject>Communities</subject><subject>Consortia</subject><subject>Current density</subject><subject>Desulfovibrio</subject><subject>Earth and Environmental Science</subject><subject>Ecotoxicology</subject><subject>Effluents</subject><subject>Electrodes</subject><subject>Electron transfer</subject><subject>Environment</subject><subject>Environmental Chemistry</subject><subject>Environmental Health</subject><subject>Environmental science</subject><subject>Feasibility studies</subject><subject>Fermentation</subject><subject>Ferredoxin</subject><subject>Fuel cells</subject><subject>Fuel technology</subject><subject>Inoculation</subject><subject>Landfill</subject><subject>Landfills</subject><subject>Leachates</subject><subject>Mutualism</subject><subject>Nitrates</subject><subject>Nuclear fuels</subject><subject>Organic matter</subject><subject>Oxidation</subject><subject>Phylogeny</subject><subject>Polarization</subject><subject>Research Article</subject><subject>Stabilization</subject><subject>Sulfate reduction</subject><subject>Sulfates</subject><subject>Sulfides</subject><subject>Tetrathiobacter</subject><subject>Waste disposal sites</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><issn>0944-1344</issn><issn>1614-7499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UcFu1DAUtBCIbhc-gAuyxIVDA8-Os46P1QIFqRIHyjmynZeuq8RebKfS_hsfh9MUhJDwxfJ4Zt48DSGvGLxjAPJ9YqxudhUwWSnGeCWekA3bMVFJodRTsgElRMVqIc7IeUp3ABwUl8_JGW-bWgJrN-Tnt5PPMRwPzlKdUrBOZxc81b6nR4xDiJP2FmkY6H4MKUfXu3m6oB8wzeMQ7p2JLlzQS4xhCl6nB-EN5qjzwQWjbcZIH-DQlxHGBauzHk8pJ1rMFwBHtMXXunyit-gxrgmcp_2sR2oPejLFZHI2BuMKMsxYYBzHF-TZoMeELx_vLfn-6ePN_nN1_fXqy_7yurJCNrmqpTUSpOEG9VDXjAvWGslbCY3cQQMCsJGg2E5plAD9bhDYYG81b_vy5PWWvF19jzH8mDHlbnJpCaA9hjl1TAFnTNTlbMmbf6h3YY6-pCss1nKlABYWW1llpZQiDt0xuknHU8egW6rt1mq7Um23VNuJonn96DybCfs_it9dFgJfCal8-VuMf43-r-svHbWyXg</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Kumar, Smita S.</creator><creator>Malyan, Sandeep K.</creator><creator>Basu, Suddhasatwa</creator><creator>Bishnoi, Narsi R</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7T7</scope><scope>7TV</scope><scope>7U7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>P64</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20170701</creationdate><title>Syntrophic association and performance of Clostridium, Desulfovibrio, Aeromonas and Tetrathiobacter as anodic biocatalysts for bioelectricity generation in dual chamber microbial fuel cell</title><author>Kumar, Smita S. ; Malyan, Sandeep K. ; Basu, Suddhasatwa ; Bishnoi, Narsi R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-37cb707b2beaf3312418b7287057605040e5709169ae700d6f4e5edca28d00d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aeromonas</topic><topic>Anodes</topic><topic>Anolytes</topic><topic>Aquatic Pollution</topic><topic>Architecture</topic><topic>Aromatic compounds</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Bacterial leaching</topic><topic>Biocatalysts</topic><topic>Biodegradation</topic><topic>Bioelectric Energy Sources</topic><topic>Bioelectricity</topic><topic>Bioremediation</topic><topic>Carbon</topic><topic>Chemical oxygen demand</topic><topic>Clostridium</topic><topic>Communities</topic><topic>Consortia</topic><topic>Current density</topic><topic>Desulfovibrio</topic><topic>Earth and Environmental Science</topic><topic>Ecotoxicology</topic><topic>Effluents</topic><topic>Electrodes</topic><topic>Electron transfer</topic><topic>Environment</topic><topic>Environmental Chemistry</topic><topic>Environmental Health</topic><topic>Environmental science</topic><topic>Feasibility studies</topic><topic>Fermentation</topic><topic>Ferredoxin</topic><topic>Fuel cells</topic><topic>Fuel technology</topic><topic>Inoculation</topic><topic>Landfill</topic><topic>Landfills</topic><topic>Leachates</topic><topic>Mutualism</topic><topic>Nitrates</topic><topic>Nuclear fuels</topic><topic>Organic matter</topic><topic>Oxidation</topic><topic>Phylogeny</topic><topic>Polarization</topic><topic>Research Article</topic><topic>Stabilization</topic><topic>Sulfate reduction</topic><topic>Sulfates</topic><topic>Sulfides</topic><topic>Tetrathiobacter</topic><topic>Waste disposal sites</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Smita S.</creatorcontrib><creatorcontrib>Malyan, Sandeep K.</creatorcontrib><creatorcontrib>Basu, Suddhasatwa</creatorcontrib><creatorcontrib>Bishnoi, Narsi R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science and pollution research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Smita S.</au><au>Malyan, Sandeep K.</au><au>Basu, Suddhasatwa</au><au>Bishnoi, Narsi R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Syntrophic association and performance of Clostridium, Desulfovibrio, Aeromonas and Tetrathiobacter as anodic biocatalysts for bioelectricity generation in dual chamber microbial fuel cell</atitle><jtitle>Environmental science and pollution research international</jtitle><stitle>Environ Sci Pollut Res</stitle><addtitle>Environ Sci Pollut Res Int</addtitle><date>2017-07-01</date><risdate>2017</risdate><volume>24</volume><issue>19</issue><spage>16019</spage><epage>16030</epage><pages>16019-16030</pages><issn>0944-1344</issn><eissn>1614-7499</eissn><abstract>Anode chamber of a dual chamber microbial fuel cell (MFC) having raw landfill leachate was inoculated with consortium of sulphate-reducing bacteria (SRB) and sulphide-oxidizing bacteria (SOB) to study the phylogenetic architecture, function and mutualism of anolyte community developed in the reactor. Enriched microbial community was analysed with the help of Illumina MiSeq and indicated the dominance of Firmicutes (41.4%), Clostridia (36.4%) and
Clostridium
(12.9%) at phylum, class and genus level, respectively.
Clostridium
was associated with fermentation as well as transfer of electrons to the electrode mediated by ferredoxin.
Desulfovibrio
(6.7%),
Aeromonas
(6.6%) and
Tetrathiobacter
(9.8%) were SRB-SOB associated with direct electron transfer to the electrode. Community analysis disclosed a syntrophic association among novel Firmicutes and Proteobacteria species for bioelectricity generation and degradation of organic matter. Complete removal of chemical oxygen demand was observed from landfill leachate within 3 days of inoculation. Lower oxidative slope and polarization resistance revealed from Tafel analysis backed the feasibility of electron transfer from microbes to anodic electrode and thus development of efficient anode-respiring community. Following enrichment and stabilization of the anodic community, maximum power density achieved was 9.15 W/m
3
and volumetric current density was 16.17 A/m
3
. Simultaneous feeding with SRB-SOB and landfill leachate led to the enrichment of a novel, mutually interdependent microbial community capable of synchronized bioremediation of effluents rich in carbon, sulphate, nitrate and aromatic compounds.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>28537018</pmid><doi>10.1007/s11356-017-9112-4</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0944-1344 |
ispartof | Environmental science and pollution research international, 2017-07, Vol.24 (19), p.16019-16030 |
issn | 0944-1344 1614-7499 |
language | eng |
recordid | cdi_proquest_miscellaneous_1902114333 |
source | MEDLINE; SpringerLink Journals |
subjects | Aeromonas Anodes Anolytes Aquatic Pollution Architecture Aromatic compounds Atmospheric Protection/Air Quality Control/Air Pollution Bacterial leaching Biocatalysts Biodegradation Bioelectric Energy Sources Bioelectricity Bioremediation Carbon Chemical oxygen demand Clostridium Communities Consortia Current density Desulfovibrio Earth and Environmental Science Ecotoxicology Effluents Electrodes Electron transfer Environment Environmental Chemistry Environmental Health Environmental science Feasibility studies Fermentation Ferredoxin Fuel cells Fuel technology Inoculation Landfill Landfills Leachates Mutualism Nitrates Nuclear fuels Organic matter Oxidation Phylogeny Polarization Research Article Stabilization Sulfate reduction Sulfates Sulfides Tetrathiobacter Waste disposal sites Waste Water Technology Water Management Water Pollution Control |
title | Syntrophic association and performance of Clostridium, Desulfovibrio, Aeromonas and Tetrathiobacter as anodic biocatalysts for bioelectricity generation in dual chamber microbial fuel cell |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T05%3A24%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Syntrophic%20association%20and%20performance%20of%20Clostridium,%20Desulfovibrio,%20Aeromonas%20and%20Tetrathiobacter%20as%20anodic%20biocatalysts%20for%20bioelectricity%20generation%20in%20dual%20chamber%20microbial%20fuel%20cell&rft.jtitle=Environmental%20science%20and%20pollution%20research%20international&rft.au=Kumar,%20Smita%20S.&rft.date=2017-07-01&rft.volume=24&rft.issue=19&rft.spage=16019&rft.epage=16030&rft.pages=16019-16030&rft.issn=0944-1344&rft.eissn=1614-7499&rft_id=info:doi/10.1007/s11356-017-9112-4&rft_dat=%3Cproquest_cross%3E1902114333%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1918299003&rft_id=info:pmid/28537018&rfr_iscdi=true |