Unique physicochemical and catalytic properties dictated by the B3NO2 ring system

The expansion of molecular diversity beyond what nature can produce is a fundamental objective in chemical sciences. Despite the rich chemistry of boron-containing heterocycles, the 1,3-dioxa-5-aza-2,4,6-triborinane (DATB) ring system, which is characterized by a six-membered B 3 NO 2 core, remains...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature chemistry 2017-06, Vol.9 (6), p.571-577
Hauptverfasser: Noda, Hidetoshi, Furutachi, Makoto, Asada, Yasuko, Shibasaki, Masakatsu, Kumagai, Naoya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 577
container_issue 6
container_start_page 571
container_title Nature chemistry
container_volume 9
creator Noda, Hidetoshi
Furutachi, Makoto
Asada, Yasuko
Shibasaki, Masakatsu
Kumagai, Naoya
description The expansion of molecular diversity beyond what nature can produce is a fundamental objective in chemical sciences. Despite the rich chemistry of boron-containing heterocycles, the 1,3-dioxa-5-aza-2,4,6-triborinane (DATB) ring system, which is characterized by a six-membered B 3 NO 2 core, remains elusive. Here, we report the synthesis of m -terphenyl-templated DATB derivatives, displaying high stability and peculiar Lewis acidity arising from the three suitably arranged boron atoms. We identify a particular utility for DATB in the dehydrative amidation of carboxylic acids and amines, a reaction of high academic and industrial importance. The three boron sites are proposed to engage in substrate assembly, lowering the entropic cost of the transition state, in contrast with the operative mechanism of previously reported catalysts and amide coupling reagents. The distinct mechanistic pathway dictated by the DATB core will advance not only such amidations, but also other reactions driven by multisite activation. Amidation is one of the most widely utilized organic reactions for the synthesis of pharmaceuticals and functional materials. DATB, characterized by the B 3 NO 2 heterocycle, proved to act as a superb catalyst for the direct amidation with a distinct mechanistic pathway, displaying broadened applicability to a wide range of substrates.
doi_str_mv 10.1038/nchem.2708
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1902113788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1917728373</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-9445a6897a885e24cf520ff7eb3dfa9e8a4eb9ebb38857efc63e3c540840c5993</originalsourceid><addsrcrecordid>eNplkF9LwzAUxYsoOKcvfoKAL6J0Jk3SJI86_AfDIbjnkqa3LqNra5I99NubOhHRp3vh_u7hnJMk5wTPCKbypjVr2M4ygeVBMiGC85RRpg5_doqPkxPvNxjnnJJ8kryuWvuxA9SvB29NN75boxuk2woZHXQzBGtQ77oeXLDgUWVN0AEqVA4orAHd0Zdlhpxt35EffIDtaXJU68bD2fecJquH-7f5U7pYPj7PbxepoYqFVDHGdS6V0FJyyJipeYbrWkBJq1orkJpBqaAsabwLqE1OgRrOsGTYcKXoNLnc60ZzMYEPxdZ6A02jW-h2viAKZ4RQIWVEL_6gm27n2uguUkSITFJBI3W1p4zrvHdQF72zW-2GguBibLf4arcY243w9R72_Zgd3C_J__Qnsz98KQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1917728373</pqid></control><display><type>article</type><title>Unique physicochemical and catalytic properties dictated by the B3NO2 ring system</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Noda, Hidetoshi ; Furutachi, Makoto ; Asada, Yasuko ; Shibasaki, Masakatsu ; Kumagai, Naoya</creator><creatorcontrib>Noda, Hidetoshi ; Furutachi, Makoto ; Asada, Yasuko ; Shibasaki, Masakatsu ; Kumagai, Naoya</creatorcontrib><description>The expansion of molecular diversity beyond what nature can produce is a fundamental objective in chemical sciences. Despite the rich chemistry of boron-containing heterocycles, the 1,3-dioxa-5-aza-2,4,6-triborinane (DATB) ring system, which is characterized by a six-membered B 3 NO 2 core, remains elusive. Here, we report the synthesis of m -terphenyl-templated DATB derivatives, displaying high stability and peculiar Lewis acidity arising from the three suitably arranged boron atoms. We identify a particular utility for DATB in the dehydrative amidation of carboxylic acids and amines, a reaction of high academic and industrial importance. The three boron sites are proposed to engage in substrate assembly, lowering the entropic cost of the transition state, in contrast with the operative mechanism of previously reported catalysts and amide coupling reagents. The distinct mechanistic pathway dictated by the DATB core will advance not only such amidations, but also other reactions driven by multisite activation. Amidation is one of the most widely utilized organic reactions for the synthesis of pharmaceuticals and functional materials. DATB, characterized by the B 3 NO 2 heterocycle, proved to act as a superb catalyst for the direct amidation with a distinct mechanistic pathway, displaying broadened applicability to a wide range of substrates.</description><identifier>ISSN: 1755-4330</identifier><identifier>EISSN: 1755-4349</identifier><identifier>DOI: 10.1038/nchem.2708</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>119/118 ; 140/131 ; 140/58 ; 639/638/549/933 ; 639/638/77/889 ; Acidity ; Amines ; Analytical Chemistry ; Biochemistry ; Boron ; Carboxylic acids ; Catalysis ; Catalysts ; Chemistry ; Chemistry/Food Science ; Coupling (molecular) ; Dehydration ; Inorganic Chemistry ; Nitrogen dioxide ; Organic Chemistry ; Physical Chemistry ; Reagents</subject><ispartof>Nature chemistry, 2017-06, Vol.9 (6), p.571-577</ispartof><rights>Springer Nature Limited 2017</rights><rights>Copyright Nature Publishing Group Jun 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-9445a6897a885e24cf520ff7eb3dfa9e8a4eb9ebb38857efc63e3c540840c5993</citedby><cites>FETCH-LOGICAL-c394t-9445a6897a885e24cf520ff7eb3dfa9e8a4eb9ebb38857efc63e3c540840c5993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Noda, Hidetoshi</creatorcontrib><creatorcontrib>Furutachi, Makoto</creatorcontrib><creatorcontrib>Asada, Yasuko</creatorcontrib><creatorcontrib>Shibasaki, Masakatsu</creatorcontrib><creatorcontrib>Kumagai, Naoya</creatorcontrib><title>Unique physicochemical and catalytic properties dictated by the B3NO2 ring system</title><title>Nature chemistry</title><addtitle>Nature Chem</addtitle><description>The expansion of molecular diversity beyond what nature can produce is a fundamental objective in chemical sciences. Despite the rich chemistry of boron-containing heterocycles, the 1,3-dioxa-5-aza-2,4,6-triborinane (DATB) ring system, which is characterized by a six-membered B 3 NO 2 core, remains elusive. Here, we report the synthesis of m -terphenyl-templated DATB derivatives, displaying high stability and peculiar Lewis acidity arising from the three suitably arranged boron atoms. We identify a particular utility for DATB in the dehydrative amidation of carboxylic acids and amines, a reaction of high academic and industrial importance. The three boron sites are proposed to engage in substrate assembly, lowering the entropic cost of the transition state, in contrast with the operative mechanism of previously reported catalysts and amide coupling reagents. The distinct mechanistic pathway dictated by the DATB core will advance not only such amidations, but also other reactions driven by multisite activation. Amidation is one of the most widely utilized organic reactions for the synthesis of pharmaceuticals and functional materials. DATB, characterized by the B 3 NO 2 heterocycle, proved to act as a superb catalyst for the direct amidation with a distinct mechanistic pathway, displaying broadened applicability to a wide range of substrates.</description><subject>119/118</subject><subject>140/131</subject><subject>140/58</subject><subject>639/638/549/933</subject><subject>639/638/77/889</subject><subject>Acidity</subject><subject>Amines</subject><subject>Analytical Chemistry</subject><subject>Biochemistry</subject><subject>Boron</subject><subject>Carboxylic acids</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemistry</subject><subject>Chemistry/Food Science</subject><subject>Coupling (molecular)</subject><subject>Dehydration</subject><subject>Inorganic Chemistry</subject><subject>Nitrogen dioxide</subject><subject>Organic Chemistry</subject><subject>Physical Chemistry</subject><subject>Reagents</subject><issn>1755-4330</issn><issn>1755-4349</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkF9LwzAUxYsoOKcvfoKAL6J0Jk3SJI86_AfDIbjnkqa3LqNra5I99NubOhHRp3vh_u7hnJMk5wTPCKbypjVr2M4ygeVBMiGC85RRpg5_doqPkxPvNxjnnJJ8kryuWvuxA9SvB29NN75boxuk2woZHXQzBGtQ77oeXLDgUWVN0AEqVA4orAHd0Zdlhpxt35EffIDtaXJU68bD2fecJquH-7f5U7pYPj7PbxepoYqFVDHGdS6V0FJyyJipeYbrWkBJq1orkJpBqaAsabwLqE1OgRrOsGTYcKXoNLnc60ZzMYEPxdZ6A02jW-h2viAKZ4RQIWVEL_6gm27n2uguUkSITFJBI3W1p4zrvHdQF72zW-2GguBibLf4arcY243w9R72_Zgd3C_J__Qnsz98KQ</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Noda, Hidetoshi</creator><creator>Furutachi, Makoto</creator><creator>Asada, Yasuko</creator><creator>Shibasaki, Masakatsu</creator><creator>Kumagai, Naoya</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope></search><sort><creationdate>20170601</creationdate><title>Unique physicochemical and catalytic properties dictated by the B3NO2 ring system</title><author>Noda, Hidetoshi ; Furutachi, Makoto ; Asada, Yasuko ; Shibasaki, Masakatsu ; Kumagai, Naoya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-9445a6897a885e24cf520ff7eb3dfa9e8a4eb9ebb38857efc63e3c540840c5993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>119/118</topic><topic>140/131</topic><topic>140/58</topic><topic>639/638/549/933</topic><topic>639/638/77/889</topic><topic>Acidity</topic><topic>Amines</topic><topic>Analytical Chemistry</topic><topic>Biochemistry</topic><topic>Boron</topic><topic>Carboxylic acids</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemistry</topic><topic>Chemistry/Food Science</topic><topic>Coupling (molecular)</topic><topic>Dehydration</topic><topic>Inorganic Chemistry</topic><topic>Nitrogen dioxide</topic><topic>Organic Chemistry</topic><topic>Physical Chemistry</topic><topic>Reagents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Noda, Hidetoshi</creatorcontrib><creatorcontrib>Furutachi, Makoto</creatorcontrib><creatorcontrib>Asada, Yasuko</creatorcontrib><creatorcontrib>Shibasaki, Masakatsu</creatorcontrib><creatorcontrib>Kumagai, Naoya</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Nature chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Noda, Hidetoshi</au><au>Furutachi, Makoto</au><au>Asada, Yasuko</au><au>Shibasaki, Masakatsu</au><au>Kumagai, Naoya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unique physicochemical and catalytic properties dictated by the B3NO2 ring system</atitle><jtitle>Nature chemistry</jtitle><stitle>Nature Chem</stitle><date>2017-06-01</date><risdate>2017</risdate><volume>9</volume><issue>6</issue><spage>571</spage><epage>577</epage><pages>571-577</pages><issn>1755-4330</issn><eissn>1755-4349</eissn><abstract>The expansion of molecular diversity beyond what nature can produce is a fundamental objective in chemical sciences. Despite the rich chemistry of boron-containing heterocycles, the 1,3-dioxa-5-aza-2,4,6-triborinane (DATB) ring system, which is characterized by a six-membered B 3 NO 2 core, remains elusive. Here, we report the synthesis of m -terphenyl-templated DATB derivatives, displaying high stability and peculiar Lewis acidity arising from the three suitably arranged boron atoms. We identify a particular utility for DATB in the dehydrative amidation of carboxylic acids and amines, a reaction of high academic and industrial importance. The three boron sites are proposed to engage in substrate assembly, lowering the entropic cost of the transition state, in contrast with the operative mechanism of previously reported catalysts and amide coupling reagents. The distinct mechanistic pathway dictated by the DATB core will advance not only such amidations, but also other reactions driven by multisite activation. Amidation is one of the most widely utilized organic reactions for the synthesis of pharmaceuticals and functional materials. DATB, characterized by the B 3 NO 2 heterocycle, proved to act as a superb catalyst for the direct amidation with a distinct mechanistic pathway, displaying broadened applicability to a wide range of substrates.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nchem.2708</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1755-4330
ispartof Nature chemistry, 2017-06, Vol.9 (6), p.571-577
issn 1755-4330
1755-4349
language eng
recordid cdi_proquest_miscellaneous_1902113788
source Nature; Alma/SFX Local Collection
subjects 119/118
140/131
140/58
639/638/549/933
639/638/77/889
Acidity
Amines
Analytical Chemistry
Biochemistry
Boron
Carboxylic acids
Catalysis
Catalysts
Chemistry
Chemistry/Food Science
Coupling (molecular)
Dehydration
Inorganic Chemistry
Nitrogen dioxide
Organic Chemistry
Physical Chemistry
Reagents
title Unique physicochemical and catalytic properties dictated by the B3NO2 ring system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A10%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unique%20physicochemical%20and%20catalytic%20properties%20dictated%20by%20the%20B3NO2%20ring%20system&rft.jtitle=Nature%20chemistry&rft.au=Noda,%20Hidetoshi&rft.date=2017-06-01&rft.volume=9&rft.issue=6&rft.spage=571&rft.epage=577&rft.pages=571-577&rft.issn=1755-4330&rft.eissn=1755-4349&rft_id=info:doi/10.1038/nchem.2708&rft_dat=%3Cproquest_cross%3E1917728373%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1917728373&rft_id=info:pmid/&rfr_iscdi=true