Unique physicochemical and catalytic properties dictated by the B3NO2 ring system
The expansion of molecular diversity beyond what nature can produce is a fundamental objective in chemical sciences. Despite the rich chemistry of boron-containing heterocycles, the 1,3-dioxa-5-aza-2,4,6-triborinane (DATB) ring system, which is characterized by a six-membered B 3 NO 2 core, remains...
Gespeichert in:
Veröffentlicht in: | Nature chemistry 2017-06, Vol.9 (6), p.571-577 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 577 |
---|---|
container_issue | 6 |
container_start_page | 571 |
container_title | Nature chemistry |
container_volume | 9 |
creator | Noda, Hidetoshi Furutachi, Makoto Asada, Yasuko Shibasaki, Masakatsu Kumagai, Naoya |
description | The expansion of molecular diversity beyond what nature can produce is a fundamental objective in chemical sciences. Despite the rich chemistry of boron-containing heterocycles, the 1,3-dioxa-5-aza-2,4,6-triborinane (DATB) ring system, which is characterized by a six-membered B
3
NO
2
core, remains elusive. Here, we report the synthesis of
m
-terphenyl-templated DATB derivatives, displaying high stability and peculiar Lewis acidity arising from the three suitably arranged boron atoms. We identify a particular utility for DATB in the dehydrative amidation of carboxylic acids and amines, a reaction of high academic and industrial importance. The three boron sites are proposed to engage in substrate assembly, lowering the entropic cost of the transition state, in contrast with the operative mechanism of previously reported catalysts and amide coupling reagents. The distinct mechanistic pathway dictated by the DATB core will advance not only such amidations, but also other reactions driven by multisite activation.
Amidation is one of the most widely utilized organic reactions for the synthesis of pharmaceuticals and functional materials. DATB, characterized by the B
3
NO
2
heterocycle, proved to act as a superb catalyst for the direct amidation with a distinct mechanistic pathway, displaying broadened applicability to a wide range of substrates. |
doi_str_mv | 10.1038/nchem.2708 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1902113788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1917728373</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-9445a6897a885e24cf520ff7eb3dfa9e8a4eb9ebb38857efc63e3c540840c5993</originalsourceid><addsrcrecordid>eNplkF9LwzAUxYsoOKcvfoKAL6J0Jk3SJI86_AfDIbjnkqa3LqNra5I99NubOhHRp3vh_u7hnJMk5wTPCKbypjVr2M4ygeVBMiGC85RRpg5_doqPkxPvNxjnnJJ8kryuWvuxA9SvB29NN75boxuk2woZHXQzBGtQ77oeXLDgUWVN0AEqVA4orAHd0Zdlhpxt35EffIDtaXJU68bD2fecJquH-7f5U7pYPj7PbxepoYqFVDHGdS6V0FJyyJipeYbrWkBJq1orkJpBqaAsabwLqE1OgRrOsGTYcKXoNLnc60ZzMYEPxdZ6A02jW-h2viAKZ4RQIWVEL_6gm27n2uguUkSITFJBI3W1p4zrvHdQF72zW-2GguBibLf4arcY243w9R72_Zgd3C_J__Qnsz98KQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1917728373</pqid></control><display><type>article</type><title>Unique physicochemical and catalytic properties dictated by the B3NO2 ring system</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Noda, Hidetoshi ; Furutachi, Makoto ; Asada, Yasuko ; Shibasaki, Masakatsu ; Kumagai, Naoya</creator><creatorcontrib>Noda, Hidetoshi ; Furutachi, Makoto ; Asada, Yasuko ; Shibasaki, Masakatsu ; Kumagai, Naoya</creatorcontrib><description>The expansion of molecular diversity beyond what nature can produce is a fundamental objective in chemical sciences. Despite the rich chemistry of boron-containing heterocycles, the 1,3-dioxa-5-aza-2,4,6-triborinane (DATB) ring system, which is characterized by a six-membered B
3
NO
2
core, remains elusive. Here, we report the synthesis of
m
-terphenyl-templated DATB derivatives, displaying high stability and peculiar Lewis acidity arising from the three suitably arranged boron atoms. We identify a particular utility for DATB in the dehydrative amidation of carboxylic acids and amines, a reaction of high academic and industrial importance. The three boron sites are proposed to engage in substrate assembly, lowering the entropic cost of the transition state, in contrast with the operative mechanism of previously reported catalysts and amide coupling reagents. The distinct mechanistic pathway dictated by the DATB core will advance not only such amidations, but also other reactions driven by multisite activation.
Amidation is one of the most widely utilized organic reactions for the synthesis of pharmaceuticals and functional materials. DATB, characterized by the B
3
NO
2
heterocycle, proved to act as a superb catalyst for the direct amidation with a distinct mechanistic pathway, displaying broadened applicability to a wide range of substrates.</description><identifier>ISSN: 1755-4330</identifier><identifier>EISSN: 1755-4349</identifier><identifier>DOI: 10.1038/nchem.2708</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>119/118 ; 140/131 ; 140/58 ; 639/638/549/933 ; 639/638/77/889 ; Acidity ; Amines ; Analytical Chemistry ; Biochemistry ; Boron ; Carboxylic acids ; Catalysis ; Catalysts ; Chemistry ; Chemistry/Food Science ; Coupling (molecular) ; Dehydration ; Inorganic Chemistry ; Nitrogen dioxide ; Organic Chemistry ; Physical Chemistry ; Reagents</subject><ispartof>Nature chemistry, 2017-06, Vol.9 (6), p.571-577</ispartof><rights>Springer Nature Limited 2017</rights><rights>Copyright Nature Publishing Group Jun 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-9445a6897a885e24cf520ff7eb3dfa9e8a4eb9ebb38857efc63e3c540840c5993</citedby><cites>FETCH-LOGICAL-c394t-9445a6897a885e24cf520ff7eb3dfa9e8a4eb9ebb38857efc63e3c540840c5993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Noda, Hidetoshi</creatorcontrib><creatorcontrib>Furutachi, Makoto</creatorcontrib><creatorcontrib>Asada, Yasuko</creatorcontrib><creatorcontrib>Shibasaki, Masakatsu</creatorcontrib><creatorcontrib>Kumagai, Naoya</creatorcontrib><title>Unique physicochemical and catalytic properties dictated by the B3NO2 ring system</title><title>Nature chemistry</title><addtitle>Nature Chem</addtitle><description>The expansion of molecular diversity beyond what nature can produce is a fundamental objective in chemical sciences. Despite the rich chemistry of boron-containing heterocycles, the 1,3-dioxa-5-aza-2,4,6-triborinane (DATB) ring system, which is characterized by a six-membered B
3
NO
2
core, remains elusive. Here, we report the synthesis of
m
-terphenyl-templated DATB derivatives, displaying high stability and peculiar Lewis acidity arising from the three suitably arranged boron atoms. We identify a particular utility for DATB in the dehydrative amidation of carboxylic acids and amines, a reaction of high academic and industrial importance. The three boron sites are proposed to engage in substrate assembly, lowering the entropic cost of the transition state, in contrast with the operative mechanism of previously reported catalysts and amide coupling reagents. The distinct mechanistic pathway dictated by the DATB core will advance not only such amidations, but also other reactions driven by multisite activation.
Amidation is one of the most widely utilized organic reactions for the synthesis of pharmaceuticals and functional materials. DATB, characterized by the B
3
NO
2
heterocycle, proved to act as a superb catalyst for the direct amidation with a distinct mechanistic pathway, displaying broadened applicability to a wide range of substrates.</description><subject>119/118</subject><subject>140/131</subject><subject>140/58</subject><subject>639/638/549/933</subject><subject>639/638/77/889</subject><subject>Acidity</subject><subject>Amines</subject><subject>Analytical Chemistry</subject><subject>Biochemistry</subject><subject>Boron</subject><subject>Carboxylic acids</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemistry</subject><subject>Chemistry/Food Science</subject><subject>Coupling (molecular)</subject><subject>Dehydration</subject><subject>Inorganic Chemistry</subject><subject>Nitrogen dioxide</subject><subject>Organic Chemistry</subject><subject>Physical Chemistry</subject><subject>Reagents</subject><issn>1755-4330</issn><issn>1755-4349</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkF9LwzAUxYsoOKcvfoKAL6J0Jk3SJI86_AfDIbjnkqa3LqNra5I99NubOhHRp3vh_u7hnJMk5wTPCKbypjVr2M4ygeVBMiGC85RRpg5_doqPkxPvNxjnnJJ8kryuWvuxA9SvB29NN75boxuk2woZHXQzBGtQ77oeXLDgUWVN0AEqVA4orAHd0Zdlhpxt35EffIDtaXJU68bD2fecJquH-7f5U7pYPj7PbxepoYqFVDHGdS6V0FJyyJipeYbrWkBJq1orkJpBqaAsabwLqE1OgRrOsGTYcKXoNLnc60ZzMYEPxdZ6A02jW-h2viAKZ4RQIWVEL_6gm27n2uguUkSITFJBI3W1p4zrvHdQF72zW-2GguBibLf4arcY243w9R72_Zgd3C_J__Qnsz98KQ</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Noda, Hidetoshi</creator><creator>Furutachi, Makoto</creator><creator>Asada, Yasuko</creator><creator>Shibasaki, Masakatsu</creator><creator>Kumagai, Naoya</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope></search><sort><creationdate>20170601</creationdate><title>Unique physicochemical and catalytic properties dictated by the B3NO2 ring system</title><author>Noda, Hidetoshi ; Furutachi, Makoto ; Asada, Yasuko ; Shibasaki, Masakatsu ; Kumagai, Naoya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-9445a6897a885e24cf520ff7eb3dfa9e8a4eb9ebb38857efc63e3c540840c5993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>119/118</topic><topic>140/131</topic><topic>140/58</topic><topic>639/638/549/933</topic><topic>639/638/77/889</topic><topic>Acidity</topic><topic>Amines</topic><topic>Analytical Chemistry</topic><topic>Biochemistry</topic><topic>Boron</topic><topic>Carboxylic acids</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemistry</topic><topic>Chemistry/Food Science</topic><topic>Coupling (molecular)</topic><topic>Dehydration</topic><topic>Inorganic Chemistry</topic><topic>Nitrogen dioxide</topic><topic>Organic Chemistry</topic><topic>Physical Chemistry</topic><topic>Reagents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Noda, Hidetoshi</creatorcontrib><creatorcontrib>Furutachi, Makoto</creatorcontrib><creatorcontrib>Asada, Yasuko</creatorcontrib><creatorcontrib>Shibasaki, Masakatsu</creatorcontrib><creatorcontrib>Kumagai, Naoya</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Nature chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Noda, Hidetoshi</au><au>Furutachi, Makoto</au><au>Asada, Yasuko</au><au>Shibasaki, Masakatsu</au><au>Kumagai, Naoya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unique physicochemical and catalytic properties dictated by the B3NO2 ring system</atitle><jtitle>Nature chemistry</jtitle><stitle>Nature Chem</stitle><date>2017-06-01</date><risdate>2017</risdate><volume>9</volume><issue>6</issue><spage>571</spage><epage>577</epage><pages>571-577</pages><issn>1755-4330</issn><eissn>1755-4349</eissn><abstract>The expansion of molecular diversity beyond what nature can produce is a fundamental objective in chemical sciences. Despite the rich chemistry of boron-containing heterocycles, the 1,3-dioxa-5-aza-2,4,6-triborinane (DATB) ring system, which is characterized by a six-membered B
3
NO
2
core, remains elusive. Here, we report the synthesis of
m
-terphenyl-templated DATB derivatives, displaying high stability and peculiar Lewis acidity arising from the three suitably arranged boron atoms. We identify a particular utility for DATB in the dehydrative amidation of carboxylic acids and amines, a reaction of high academic and industrial importance. The three boron sites are proposed to engage in substrate assembly, lowering the entropic cost of the transition state, in contrast with the operative mechanism of previously reported catalysts and amide coupling reagents. The distinct mechanistic pathway dictated by the DATB core will advance not only such amidations, but also other reactions driven by multisite activation.
Amidation is one of the most widely utilized organic reactions for the synthesis of pharmaceuticals and functional materials. DATB, characterized by the B
3
NO
2
heterocycle, proved to act as a superb catalyst for the direct amidation with a distinct mechanistic pathway, displaying broadened applicability to a wide range of substrates.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nchem.2708</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1755-4330 |
ispartof | Nature chemistry, 2017-06, Vol.9 (6), p.571-577 |
issn | 1755-4330 1755-4349 |
language | eng |
recordid | cdi_proquest_miscellaneous_1902113788 |
source | Nature; Alma/SFX Local Collection |
subjects | 119/118 140/131 140/58 639/638/549/933 639/638/77/889 Acidity Amines Analytical Chemistry Biochemistry Boron Carboxylic acids Catalysis Catalysts Chemistry Chemistry/Food Science Coupling (molecular) Dehydration Inorganic Chemistry Nitrogen dioxide Organic Chemistry Physical Chemistry Reagents |
title | Unique physicochemical and catalytic properties dictated by the B3NO2 ring system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A10%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unique%20physicochemical%20and%20catalytic%20properties%20dictated%20by%20the%20B3NO2%20ring%20system&rft.jtitle=Nature%20chemistry&rft.au=Noda,%20Hidetoshi&rft.date=2017-06-01&rft.volume=9&rft.issue=6&rft.spage=571&rft.epage=577&rft.pages=571-577&rft.issn=1755-4330&rft.eissn=1755-4349&rft_id=info:doi/10.1038/nchem.2708&rft_dat=%3Cproquest_cross%3E1917728373%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1917728373&rft_id=info:pmid/&rfr_iscdi=true |