Integrating global land cover datasets for deriving user-specific maps
Global scale land cover (LC) mapping has interested many researchers over the last two decades as it is an input data source for various applications. Current global land cover (GLC) maps often do not meet the accuracy and thematic requirements of specific users. This study aimed to create an improv...
Gespeichert in:
Veröffentlicht in: | International journal of digital earth 2017-03, Vol.10 (3), p.219-237 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 237 |
---|---|
container_issue | 3 |
container_start_page | 219 |
container_title | International journal of digital earth |
container_volume | 10 |
creator | Tsendbazar, Nandin-Erdene de Bruin, Sytze Herold, Martin |
description | Global scale land cover (LC) mapping has interested many researchers over the last two decades as it is an input data source for various applications. Current global land cover (GLC) maps often do not meet the accuracy and thematic requirements of specific users. This study aimed to create an improved GLC map by integrating available GLC maps and reference datasets. We also address the thematic requirements of multiple users by demonstrating a concept of producing GLC maps with user-specific legends. We used a regression kriging method to integrate Globcover-2009, LC-CCI-2010, MODIS-2010 and Globeland30 maps and several publicly available GLC reference datasets. Overall correspondence of the integrated GLC map with reference LC was 80% based on 10-fold cross-validation using 24,681 sample sites. This is globally 10% and regionally 6-13% higher than the input map correspondences. Based on LC class presence probability maps, expected LC proportion maps at coarser resolution were created and used for characterizing mosaic classes for land system modelling and biodiversity assessments. Since more reference datasets are becoming freely accessible, GLC mapping can be further improved by using the pool of all available reference datasets. LC proportion information allow tuning LC products to specific user needs. |
doi_str_mv | 10.1080/17538947.2016.1217942 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1901746640</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e912630622ec4e1399dd68de1c68c753</doaj_id><sourcerecordid>1901746640</sourcerecordid><originalsourceid>FETCH-LOGICAL-c568t-64909c70caa08505995c8054cbbebd781ccdffedeb0926ae4992de41448b2a763</originalsourceid><addsrcrecordid>eNqNkk9rFTEUxQdRsFY_gjDgxs17TTL560op1j4ouNF1yCR3hjzykjGZ6aPf3kynduFCXCW5nPODe3Ka5j1Ge4wkusKCdVJRsScI8z0mWChKXjQX63wnFWMvn-9UvG7elHJEiCNKu4vm5hBnGLOZfRzbMaTehDaY6Fqb7iG3zsymwFzaIdUHZH-_6pYCeVcmsH7wtj2ZqbxtXg0mFHj3dF42P2--_ri-3d19_3a4_nK3s4zLecepQsoKZI1BkiGmFLMSMWr7HnonJLbWDQM46JEi3ABVijigmFLZEyN4d9kcNq5L5qin7E8mP-hkvH4cpDxqk2dvA2hQmPAOcULAUsCdUs5x6QBbLm1No7I-bayzGSHWvSDqaLL15REYfJ9X-HnJOob1mJa-aIYEYbiaP27mKadfC5RZn3yxEGp2kJaisUKUUEHlf0mxoJxTVKUf_pIe05JjTVRjyTmRjAhRVWxT2ZxKyTA8B4GRXhuh_zRCr43QT42ovs-bz8f6nSdzTjk4PZuHkPKQTVw37_6N-A0EIrzP</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1866285277</pqid></control><display><type>article</type><title>Integrating global land cover datasets for deriving user-specific maps</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Tsendbazar, Nandin-Erdene ; de Bruin, Sytze ; Herold, Martin</creator><creatorcontrib>Tsendbazar, Nandin-Erdene ; de Bruin, Sytze ; Herold, Martin</creatorcontrib><description>Global scale land cover (LC) mapping has interested many researchers over the last two decades as it is an input data source for various applications. Current global land cover (GLC) maps often do not meet the accuracy and thematic requirements of specific users. This study aimed to create an improved GLC map by integrating available GLC maps and reference datasets. We also address the thematic requirements of multiple users by demonstrating a concept of producing GLC maps with user-specific legends. We used a regression kriging method to integrate Globcover-2009, LC-CCI-2010, MODIS-2010 and Globeland30 maps and several publicly available GLC reference datasets. Overall correspondence of the integrated GLC map with reference LC was 80% based on 10-fold cross-validation using 24,681 sample sites. This is globally 10% and regionally 6-13% higher than the input map correspondences. Based on LC class presence probability maps, expected LC proportion maps at coarser resolution were created and used for characterizing mosaic classes for land system modelling and biodiversity assessments. Since more reference datasets are becoming freely accessible, GLC mapping can be further improved by using the pool of all available reference datasets. LC proportion information allow tuning LC products to specific user needs.</description><identifier>ISSN: 1753-8947</identifier><identifier>EISSN: 1753-8955</identifier><identifier>DOI: 10.1080/17538947.2016.1217942</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>Assessments ; data integration ; Datasets ; Global land cover ; Kriging ; Land cover ; LC proportion ; Mapping ; Tuning ; User requirements ; user-specific legend</subject><ispartof>International journal of digital earth, 2017-03, Vol.10 (3), p.219-237</ispartof><rights>2016 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2016</rights><rights>2016 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group</rights><rights>Wageningen University & Research</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c568t-64909c70caa08505995c8054cbbebd781ccdffedeb0926ae4992de41448b2a763</citedby><cites>FETCH-LOGICAL-c568t-64909c70caa08505995c8054cbbebd781ccdffedeb0926ae4992de41448b2a763</cites><orcidid>0000-0003-0246-6886 ; 0000-0002-6884-2832 ; 0000-0002-4825-1971</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,27926,27927</link.rule.ids></links><search><creatorcontrib>Tsendbazar, Nandin-Erdene</creatorcontrib><creatorcontrib>de Bruin, Sytze</creatorcontrib><creatorcontrib>Herold, Martin</creatorcontrib><title>Integrating global land cover datasets for deriving user-specific maps</title><title>International journal of digital earth</title><description>Global scale land cover (LC) mapping has interested many researchers over the last two decades as it is an input data source for various applications. Current global land cover (GLC) maps often do not meet the accuracy and thematic requirements of specific users. This study aimed to create an improved GLC map by integrating available GLC maps and reference datasets. We also address the thematic requirements of multiple users by demonstrating a concept of producing GLC maps with user-specific legends. We used a regression kriging method to integrate Globcover-2009, LC-CCI-2010, MODIS-2010 and Globeland30 maps and several publicly available GLC reference datasets. Overall correspondence of the integrated GLC map with reference LC was 80% based on 10-fold cross-validation using 24,681 sample sites. This is globally 10% and regionally 6-13% higher than the input map correspondences. Based on LC class presence probability maps, expected LC proportion maps at coarser resolution were created and used for characterizing mosaic classes for land system modelling and biodiversity assessments. Since more reference datasets are becoming freely accessible, GLC mapping can be further improved by using the pool of all available reference datasets. LC proportion information allow tuning LC products to specific user needs.</description><subject>Assessments</subject><subject>data integration</subject><subject>Datasets</subject><subject>Global land cover</subject><subject>Kriging</subject><subject>Land cover</subject><subject>LC proportion</subject><subject>Mapping</subject><subject>Tuning</subject><subject>User requirements</subject><subject>user-specific legend</subject><issn>1753-8947</issn><issn>1753-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>DOA</sourceid><recordid>eNqNkk9rFTEUxQdRsFY_gjDgxs17TTL560op1j4ouNF1yCR3hjzykjGZ6aPf3kynduFCXCW5nPODe3Ka5j1Ge4wkusKCdVJRsScI8z0mWChKXjQX63wnFWMvn-9UvG7elHJEiCNKu4vm5hBnGLOZfRzbMaTehDaY6Fqb7iG3zsymwFzaIdUHZH-_6pYCeVcmsH7wtj2ZqbxtXg0mFHj3dF42P2--_ri-3d19_3a4_nK3s4zLecepQsoKZI1BkiGmFLMSMWr7HnonJLbWDQM46JEi3ABVijigmFLZEyN4d9kcNq5L5qin7E8mP-hkvH4cpDxqk2dvA2hQmPAOcULAUsCdUs5x6QBbLm1No7I-bayzGSHWvSDqaLL15REYfJ9X-HnJOob1mJa-aIYEYbiaP27mKadfC5RZn3yxEGp2kJaisUKUUEHlf0mxoJxTVKUf_pIe05JjTVRjyTmRjAhRVWxT2ZxKyTA8B4GRXhuh_zRCr43QT42ovs-bz8f6nSdzTjk4PZuHkPKQTVw37_6N-A0EIrzP</recordid><startdate>20170304</startdate><enddate>20170304</enddate><creator>Tsendbazar, Nandin-Erdene</creator><creator>de Bruin, Sytze</creator><creator>Herold, Martin</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><general>Taylor & Francis Group</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><scope>QVL</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0246-6886</orcidid><orcidid>https://orcid.org/0000-0002-6884-2832</orcidid><orcidid>https://orcid.org/0000-0002-4825-1971</orcidid></search><sort><creationdate>20170304</creationdate><title>Integrating global land cover datasets for deriving user-specific maps</title><author>Tsendbazar, Nandin-Erdene ; de Bruin, Sytze ; Herold, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c568t-64909c70caa08505995c8054cbbebd781ccdffedeb0926ae4992de41448b2a763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Assessments</topic><topic>data integration</topic><topic>Datasets</topic><topic>Global land cover</topic><topic>Kriging</topic><topic>Land cover</topic><topic>LC proportion</topic><topic>Mapping</topic><topic>Tuning</topic><topic>User requirements</topic><topic>user-specific legend</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsendbazar, Nandin-Erdene</creatorcontrib><creatorcontrib>de Bruin, Sytze</creatorcontrib><creatorcontrib>Herold, Martin</creatorcontrib><collection>Taylor & Francis Open Access</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>NARCIS:Publications</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of digital earth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsendbazar, Nandin-Erdene</au><au>de Bruin, Sytze</au><au>Herold, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrating global land cover datasets for deriving user-specific maps</atitle><jtitle>International journal of digital earth</jtitle><date>2017-03-04</date><risdate>2017</risdate><volume>10</volume><issue>3</issue><spage>219</spage><epage>237</epage><pages>219-237</pages><issn>1753-8947</issn><eissn>1753-8955</eissn><abstract>Global scale land cover (LC) mapping has interested many researchers over the last two decades as it is an input data source for various applications. Current global land cover (GLC) maps often do not meet the accuracy and thematic requirements of specific users. This study aimed to create an improved GLC map by integrating available GLC maps and reference datasets. We also address the thematic requirements of multiple users by demonstrating a concept of producing GLC maps with user-specific legends. We used a regression kriging method to integrate Globcover-2009, LC-CCI-2010, MODIS-2010 and Globeland30 maps and several publicly available GLC reference datasets. Overall correspondence of the integrated GLC map with reference LC was 80% based on 10-fold cross-validation using 24,681 sample sites. This is globally 10% and regionally 6-13% higher than the input map correspondences. Based on LC class presence probability maps, expected LC proportion maps at coarser resolution were created and used for characterizing mosaic classes for land system modelling and biodiversity assessments. Since more reference datasets are becoming freely accessible, GLC mapping can be further improved by using the pool of all available reference datasets. LC proportion information allow tuning LC products to specific user needs.</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><doi>10.1080/17538947.2016.1217942</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-0246-6886</orcidid><orcidid>https://orcid.org/0000-0002-6884-2832</orcidid><orcidid>https://orcid.org/0000-0002-4825-1971</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1753-8947 |
ispartof | International journal of digital earth, 2017-03, Vol.10 (3), p.219-237 |
issn | 1753-8947 1753-8955 |
language | eng |
recordid | cdi_proquest_miscellaneous_1901746640 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Assessments data integration Datasets Global land cover Kriging Land cover LC proportion Mapping Tuning User requirements user-specific legend |
title | Integrating global land cover datasets for deriving user-specific maps |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T10%3A00%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrating%20global%20land%20cover%20datasets%20for%20deriving%20user-specific%20maps&rft.jtitle=International%20journal%20of%20digital%20earth&rft.au=Tsendbazar,%20Nandin-Erdene&rft.date=2017-03-04&rft.volume=10&rft.issue=3&rft.spage=219&rft.epage=237&rft.pages=219-237&rft.issn=1753-8947&rft.eissn=1753-8955&rft_id=info:doi/10.1080/17538947.2016.1217942&rft_dat=%3Cproquest_doaj_%3E1901746640%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1866285277&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_e912630622ec4e1399dd68de1c68c753&rfr_iscdi=true |