Conditional Switch between Frameshifting Regimes upon Translation of dnaX mRNA

Ribosome frameshifting during translation of bacterial dnaX can proceed via different routes, generating a variety of distinct polypeptides. Using kinetic experiments, we show that –1 frameshifting predominantly occurs during translocation of two tRNAs bound to the slippery sequence codons. This pat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular cell 2017-05, Vol.66 (4), p.558-567.e4
Hauptverfasser: Caliskan, Neva, Wohlgemuth, Ingo, Korniy, Natalia, Pearson, Michael, Peske, Frank, Rodnina, Marina V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 567.e4
container_issue 4
container_start_page 558
container_title Molecular cell
container_volume 66
creator Caliskan, Neva
Wohlgemuth, Ingo
Korniy, Natalia
Pearson, Michael
Peske, Frank
Rodnina, Marina V.
description Ribosome frameshifting during translation of bacterial dnaX can proceed via different routes, generating a variety of distinct polypeptides. Using kinetic experiments, we show that –1 frameshifting predominantly occurs during translocation of two tRNAs bound to the slippery sequence codons. This pathway depends on a stem-loop mRNA structure downstream of the slippery sequence and operates when aminoacyl-tRNAs are abundant. However, when aminoacyl-tRNAs are in short supply, the ribosome switches to an alternative frameshifting pathway that is independent of a stem-loop. Ribosome stalling at a vacant 0-frame A-site codon results in slippage of the P-site peptidyl-tRNA, allowing for –1-frame decoding. When the –1-frame aminoacyl-tRNA is lacking, the ribosomes switch into –2 frame. Quantitative mass spectrometry shows that the –2-frame product is synthesized in vivo. We suggest that switching between frameshifting routes may enrich gene expression at conditions of aminoacyl-tRNA limitation. [Display omitted] •–1 frameshifting predominantly occurs upon translocation of two slippery-site tRNAs•An alternative frameshifting pathway operates when aminoacyl-tRNA supply is limited•Hungry frameshifting is slow and independent of the mRNA secondary structure element•Switching between frameshifting routes can enrich coding capacity of the genome Caliskan et al. show that ribosomes can change the reading frame depending on aminoacyl-tRNA supply. Ribosome pausing at a hungry codon leads to –1 or –2 frameshifting independent of a regulatory mRNA element normally required for programmed frameshifting. Switching between frameshifting routes can enrich coding capacity upon aminoacyl-tRNA limitation.
doi_str_mv 10.1016/j.molcel.2017.04.023
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1900834226</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1097276517303088</els_id><sourcerecordid>1900834226</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-fb167f0f292a0184bf1b311277da6aac94bdf9ab4400e5afee42602181ff31933</originalsourceid><addsrcrecordid>eNp9kEtLxDAQx4Movr-BSI5ets6k6esiyOILRMEHeAtpO9EsbbImXRe_vV129ehpZuD3n2F-jJ0gJAiYn8-S3ncNdYkALBKQCYh0i-0jVMVEYi63N70o8myPHcQ4A0CZldUu2xNlJrJCZvvsYepdawfrne7489IOzQevaVgSOX4ddE_xw5rBunf-RO92HPli7h1_CdrFTq9y3BveOv3G-6eHyyO2Y3QX6XhTD9nr9dXL9HZy_3hzN728nzQSymFiaswLA0ZUQgOWsjZYp4iiKFqda91Usm5NpWspASjThkiKHASWaEyKVZoesrP13nnwnwuKg-ptHGV02pFfRIUVQJlKIfIRlWu0CT7GQEbNg-11-FYIamVSzdTapFqZVCDVaHKMnW4uLOqe2r_Qr7oRuFgDNP75ZSmo2FhyDbU2UDOo1tv_L_wA9JSGUQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1900834226</pqid></control><display><type>article</type><title>Conditional Switch between Frameshifting Regimes upon Translation of dnaX mRNA</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ScienceDirect Journals (5 years ago - present)</source><source>Free Full-Text Journals in Chemistry</source><creator>Caliskan, Neva ; Wohlgemuth, Ingo ; Korniy, Natalia ; Pearson, Michael ; Peske, Frank ; Rodnina, Marina V.</creator><creatorcontrib>Caliskan, Neva ; Wohlgemuth, Ingo ; Korniy, Natalia ; Pearson, Michael ; Peske, Frank ; Rodnina, Marina V.</creatorcontrib><description>Ribosome frameshifting during translation of bacterial dnaX can proceed via different routes, generating a variety of distinct polypeptides. Using kinetic experiments, we show that –1 frameshifting predominantly occurs during translocation of two tRNAs bound to the slippery sequence codons. This pathway depends on a stem-loop mRNA structure downstream of the slippery sequence and operates when aminoacyl-tRNAs are abundant. However, when aminoacyl-tRNAs are in short supply, the ribosome switches to an alternative frameshifting pathway that is independent of a stem-loop. Ribosome stalling at a vacant 0-frame A-site codon results in slippage of the P-site peptidyl-tRNA, allowing for –1-frame decoding. When the –1-frame aminoacyl-tRNA is lacking, the ribosomes switch into –2 frame. Quantitative mass spectrometry shows that the –2-frame product is synthesized in vivo. We suggest that switching between frameshifting routes may enrich gene expression at conditions of aminoacyl-tRNA limitation. [Display omitted] •–1 frameshifting predominantly occurs upon translocation of two slippery-site tRNAs•An alternative frameshifting pathway operates when aminoacyl-tRNA supply is limited•Hungry frameshifting is slow and independent of the mRNA secondary structure element•Switching between frameshifting routes can enrich coding capacity of the genome Caliskan et al. show that ribosomes can change the reading frame depending on aminoacyl-tRNA supply. Ribosome pausing at a hungry codon leads to –1 or –2 frameshifting independent of a regulatory mRNA element normally required for programmed frameshifting. Switching between frameshifting routes can enrich coding capacity upon aminoacyl-tRNA limitation.</description><identifier>ISSN: 1097-2765</identifier><identifier>EISSN: 1097-4164</identifier><identifier>DOI: 10.1016/j.molcel.2017.04.023</identifier><identifier>PMID: 28525745</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Bacterial Proteins - biosynthesis ; Bacterial Proteins - genetics ; DNA Polymerase III - biosynthesis ; DNA Polymerase III - genetics ; dnaX ; Escherichia coli - enzymology ; Escherichia coli - genetics ; Frameshifting, Ribosomal ; Gene Expression Regulation, Bacterial ; Gene Expression Regulation, Enzymologic ; Kinetics ; Mutation ; Nucleic Acid Conformation ; programmed ribosome frameshifting ; protein synthesis ; recoding ; RNA, Bacterial - chemistry ; RNA, Bacterial - genetics ; RNA, Bacterial - metabolism ; RNA, Messenger - chemistry ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; RNA, Transfer, Amino Acyl - chemistry ; RNA, Transfer, Amino Acyl - genetics ; RNA, Transfer, Amino Acyl - metabolism ; Spectrometry, Mass, Electrospray Ionization ; Structure-Activity Relationship ; Tandem Mass Spectrometry ; translation pausing ; translation regulation ; tRNA abundance</subject><ispartof>Molecular cell, 2017-05, Vol.66 (4), p.558-567.e4</ispartof><rights>2017 Elsevier Inc.</rights><rights>Copyright © 2017 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-fb167f0f292a0184bf1b311277da6aac94bdf9ab4400e5afee42602181ff31933</citedby><cites>FETCH-LOGICAL-c408t-fb167f0f292a0184bf1b311277da6aac94bdf9ab4400e5afee42602181ff31933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.molcel.2017.04.023$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28525745$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Caliskan, Neva</creatorcontrib><creatorcontrib>Wohlgemuth, Ingo</creatorcontrib><creatorcontrib>Korniy, Natalia</creatorcontrib><creatorcontrib>Pearson, Michael</creatorcontrib><creatorcontrib>Peske, Frank</creatorcontrib><creatorcontrib>Rodnina, Marina V.</creatorcontrib><title>Conditional Switch between Frameshifting Regimes upon Translation of dnaX mRNA</title><title>Molecular cell</title><addtitle>Mol Cell</addtitle><description>Ribosome frameshifting during translation of bacterial dnaX can proceed via different routes, generating a variety of distinct polypeptides. Using kinetic experiments, we show that –1 frameshifting predominantly occurs during translocation of two tRNAs bound to the slippery sequence codons. This pathway depends on a stem-loop mRNA structure downstream of the slippery sequence and operates when aminoacyl-tRNAs are abundant. However, when aminoacyl-tRNAs are in short supply, the ribosome switches to an alternative frameshifting pathway that is independent of a stem-loop. Ribosome stalling at a vacant 0-frame A-site codon results in slippage of the P-site peptidyl-tRNA, allowing for –1-frame decoding. When the –1-frame aminoacyl-tRNA is lacking, the ribosomes switch into –2 frame. Quantitative mass spectrometry shows that the –2-frame product is synthesized in vivo. We suggest that switching between frameshifting routes may enrich gene expression at conditions of aminoacyl-tRNA limitation. [Display omitted] •–1 frameshifting predominantly occurs upon translocation of two slippery-site tRNAs•An alternative frameshifting pathway operates when aminoacyl-tRNA supply is limited•Hungry frameshifting is slow and independent of the mRNA secondary structure element•Switching between frameshifting routes can enrich coding capacity of the genome Caliskan et al. show that ribosomes can change the reading frame depending on aminoacyl-tRNA supply. Ribosome pausing at a hungry codon leads to –1 or –2 frameshifting independent of a regulatory mRNA element normally required for programmed frameshifting. Switching between frameshifting routes can enrich coding capacity upon aminoacyl-tRNA limitation.</description><subject>Bacterial Proteins - biosynthesis</subject><subject>Bacterial Proteins - genetics</subject><subject>DNA Polymerase III - biosynthesis</subject><subject>DNA Polymerase III - genetics</subject><subject>dnaX</subject><subject>Escherichia coli - enzymology</subject><subject>Escherichia coli - genetics</subject><subject>Frameshifting, Ribosomal</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Gene Expression Regulation, Enzymologic</subject><subject>Kinetics</subject><subject>Mutation</subject><subject>Nucleic Acid Conformation</subject><subject>programmed ribosome frameshifting</subject><subject>protein synthesis</subject><subject>recoding</subject><subject>RNA, Bacterial - chemistry</subject><subject>RNA, Bacterial - genetics</subject><subject>RNA, Bacterial - metabolism</subject><subject>RNA, Messenger - chemistry</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>RNA, Transfer, Amino Acyl - chemistry</subject><subject>RNA, Transfer, Amino Acyl - genetics</subject><subject>RNA, Transfer, Amino Acyl - metabolism</subject><subject>Spectrometry, Mass, Electrospray Ionization</subject><subject>Structure-Activity Relationship</subject><subject>Tandem Mass Spectrometry</subject><subject>translation pausing</subject><subject>translation regulation</subject><subject>tRNA abundance</subject><issn>1097-2765</issn><issn>1097-4164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtLxDAQx4Movr-BSI5ets6k6esiyOILRMEHeAtpO9EsbbImXRe_vV129ehpZuD3n2F-jJ0gJAiYn8-S3ncNdYkALBKQCYh0i-0jVMVEYi63N70o8myPHcQ4A0CZldUu2xNlJrJCZvvsYepdawfrne7489IOzQevaVgSOX4ddE_xw5rBunf-RO92HPli7h1_CdrFTq9y3BveOv3G-6eHyyO2Y3QX6XhTD9nr9dXL9HZy_3hzN728nzQSymFiaswLA0ZUQgOWsjZYp4iiKFqda91Usm5NpWspASjThkiKHASWaEyKVZoesrP13nnwnwuKg-ptHGV02pFfRIUVQJlKIfIRlWu0CT7GQEbNg-11-FYIamVSzdTapFqZVCDVaHKMnW4uLOqe2r_Qr7oRuFgDNP75ZSmo2FhyDbU2UDOo1tv_L_wA9JSGUQ</recordid><startdate>20170518</startdate><enddate>20170518</enddate><creator>Caliskan, Neva</creator><creator>Wohlgemuth, Ingo</creator><creator>Korniy, Natalia</creator><creator>Pearson, Michael</creator><creator>Peske, Frank</creator><creator>Rodnina, Marina V.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20170518</creationdate><title>Conditional Switch between Frameshifting Regimes upon Translation of dnaX mRNA</title><author>Caliskan, Neva ; Wohlgemuth, Ingo ; Korniy, Natalia ; Pearson, Michael ; Peske, Frank ; Rodnina, Marina V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-fb167f0f292a0184bf1b311277da6aac94bdf9ab4400e5afee42602181ff31933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bacterial Proteins - biosynthesis</topic><topic>Bacterial Proteins - genetics</topic><topic>DNA Polymerase III - biosynthesis</topic><topic>DNA Polymerase III - genetics</topic><topic>dnaX</topic><topic>Escherichia coli - enzymology</topic><topic>Escherichia coli - genetics</topic><topic>Frameshifting, Ribosomal</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Gene Expression Regulation, Enzymologic</topic><topic>Kinetics</topic><topic>Mutation</topic><topic>Nucleic Acid Conformation</topic><topic>programmed ribosome frameshifting</topic><topic>protein synthesis</topic><topic>recoding</topic><topic>RNA, Bacterial - chemistry</topic><topic>RNA, Bacterial - genetics</topic><topic>RNA, Bacterial - metabolism</topic><topic>RNA, Messenger - chemistry</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>RNA, Transfer, Amino Acyl - chemistry</topic><topic>RNA, Transfer, Amino Acyl - genetics</topic><topic>RNA, Transfer, Amino Acyl - metabolism</topic><topic>Spectrometry, Mass, Electrospray Ionization</topic><topic>Structure-Activity Relationship</topic><topic>Tandem Mass Spectrometry</topic><topic>translation pausing</topic><topic>translation regulation</topic><topic>tRNA abundance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caliskan, Neva</creatorcontrib><creatorcontrib>Wohlgemuth, Ingo</creatorcontrib><creatorcontrib>Korniy, Natalia</creatorcontrib><creatorcontrib>Pearson, Michael</creatorcontrib><creatorcontrib>Peske, Frank</creatorcontrib><creatorcontrib>Rodnina, Marina V.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caliskan, Neva</au><au>Wohlgemuth, Ingo</au><au>Korniy, Natalia</au><au>Pearson, Michael</au><au>Peske, Frank</au><au>Rodnina, Marina V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conditional Switch between Frameshifting Regimes upon Translation of dnaX mRNA</atitle><jtitle>Molecular cell</jtitle><addtitle>Mol Cell</addtitle><date>2017-05-18</date><risdate>2017</risdate><volume>66</volume><issue>4</issue><spage>558</spage><epage>567.e4</epage><pages>558-567.e4</pages><issn>1097-2765</issn><eissn>1097-4164</eissn><abstract>Ribosome frameshifting during translation of bacterial dnaX can proceed via different routes, generating a variety of distinct polypeptides. Using kinetic experiments, we show that –1 frameshifting predominantly occurs during translocation of two tRNAs bound to the slippery sequence codons. This pathway depends on a stem-loop mRNA structure downstream of the slippery sequence and operates when aminoacyl-tRNAs are abundant. However, when aminoacyl-tRNAs are in short supply, the ribosome switches to an alternative frameshifting pathway that is independent of a stem-loop. Ribosome stalling at a vacant 0-frame A-site codon results in slippage of the P-site peptidyl-tRNA, allowing for –1-frame decoding. When the –1-frame aminoacyl-tRNA is lacking, the ribosomes switch into –2 frame. Quantitative mass spectrometry shows that the –2-frame product is synthesized in vivo. We suggest that switching between frameshifting routes may enrich gene expression at conditions of aminoacyl-tRNA limitation. [Display omitted] •–1 frameshifting predominantly occurs upon translocation of two slippery-site tRNAs•An alternative frameshifting pathway operates when aminoacyl-tRNA supply is limited•Hungry frameshifting is slow and independent of the mRNA secondary structure element•Switching between frameshifting routes can enrich coding capacity of the genome Caliskan et al. show that ribosomes can change the reading frame depending on aminoacyl-tRNA supply. Ribosome pausing at a hungry codon leads to –1 or –2 frameshifting independent of a regulatory mRNA element normally required for programmed frameshifting. Switching between frameshifting routes can enrich coding capacity upon aminoacyl-tRNA limitation.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>28525745</pmid><doi>10.1016/j.molcel.2017.04.023</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1097-2765
ispartof Molecular cell, 2017-05, Vol.66 (4), p.558-567.e4
issn 1097-2765
1097-4164
language eng
recordid cdi_proquest_miscellaneous_1900834226
source MEDLINE; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ScienceDirect Journals (5 years ago - present); Free Full-Text Journals in Chemistry
subjects Bacterial Proteins - biosynthesis
Bacterial Proteins - genetics
DNA Polymerase III - biosynthesis
DNA Polymerase III - genetics
dnaX
Escherichia coli - enzymology
Escherichia coli - genetics
Frameshifting, Ribosomal
Gene Expression Regulation, Bacterial
Gene Expression Regulation, Enzymologic
Kinetics
Mutation
Nucleic Acid Conformation
programmed ribosome frameshifting
protein synthesis
recoding
RNA, Bacterial - chemistry
RNA, Bacterial - genetics
RNA, Bacterial - metabolism
RNA, Messenger - chemistry
RNA, Messenger - genetics
RNA, Messenger - metabolism
RNA, Transfer, Amino Acyl - chemistry
RNA, Transfer, Amino Acyl - genetics
RNA, Transfer, Amino Acyl - metabolism
Spectrometry, Mass, Electrospray Ionization
Structure-Activity Relationship
Tandem Mass Spectrometry
translation pausing
translation regulation
tRNA abundance
title Conditional Switch between Frameshifting Regimes upon Translation of dnaX mRNA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T13%3A20%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conditional%20Switch%20between%20Frameshifting%20Regimes%20upon%20Translation%20of%20dnaX%20mRNA&rft.jtitle=Molecular%20cell&rft.au=Caliskan,%20Neva&rft.date=2017-05-18&rft.volume=66&rft.issue=4&rft.spage=558&rft.epage=567.e4&rft.pages=558-567.e4&rft.issn=1097-2765&rft.eissn=1097-4164&rft_id=info:doi/10.1016/j.molcel.2017.04.023&rft_dat=%3Cproquest_cross%3E1900834226%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1900834226&rft_id=info:pmid/28525745&rft_els_id=S1097276517303088&rfr_iscdi=true