Conditional Switch between Frameshifting Regimes upon Translation of dnaX mRNA
Ribosome frameshifting during translation of bacterial dnaX can proceed via different routes, generating a variety of distinct polypeptides. Using kinetic experiments, we show that –1 frameshifting predominantly occurs during translocation of two tRNAs bound to the slippery sequence codons. This pat...
Gespeichert in:
Veröffentlicht in: | Molecular cell 2017-05, Vol.66 (4), p.558-567.e4 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 567.e4 |
---|---|
container_issue | 4 |
container_start_page | 558 |
container_title | Molecular cell |
container_volume | 66 |
creator | Caliskan, Neva Wohlgemuth, Ingo Korniy, Natalia Pearson, Michael Peske, Frank Rodnina, Marina V. |
description | Ribosome frameshifting during translation of bacterial dnaX can proceed via different routes, generating a variety of distinct polypeptides. Using kinetic experiments, we show that –1 frameshifting predominantly occurs during translocation of two tRNAs bound to the slippery sequence codons. This pathway depends on a stem-loop mRNA structure downstream of the slippery sequence and operates when aminoacyl-tRNAs are abundant. However, when aminoacyl-tRNAs are in short supply, the ribosome switches to an alternative frameshifting pathway that is independent of a stem-loop. Ribosome stalling at a vacant 0-frame A-site codon results in slippage of the P-site peptidyl-tRNA, allowing for –1-frame decoding. When the –1-frame aminoacyl-tRNA is lacking, the ribosomes switch into –2 frame. Quantitative mass spectrometry shows that the –2-frame product is synthesized in vivo. We suggest that switching between frameshifting routes may enrich gene expression at conditions of aminoacyl-tRNA limitation.
[Display omitted]
•–1 frameshifting predominantly occurs upon translocation of two slippery-site tRNAs•An alternative frameshifting pathway operates when aminoacyl-tRNA supply is limited•Hungry frameshifting is slow and independent of the mRNA secondary structure element•Switching between frameshifting routes can enrich coding capacity of the genome
Caliskan et al. show that ribosomes can change the reading frame depending on aminoacyl-tRNA supply. Ribosome pausing at a hungry codon leads to –1 or –2 frameshifting independent of a regulatory mRNA element normally required for programmed frameshifting. Switching between frameshifting routes can enrich coding capacity upon aminoacyl-tRNA limitation. |
doi_str_mv | 10.1016/j.molcel.2017.04.023 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1900834226</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1097276517303088</els_id><sourcerecordid>1900834226</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-fb167f0f292a0184bf1b311277da6aac94bdf9ab4400e5afee42602181ff31933</originalsourceid><addsrcrecordid>eNp9kEtLxDAQx4Movr-BSI5ets6k6esiyOILRMEHeAtpO9EsbbImXRe_vV129ehpZuD3n2F-jJ0gJAiYn8-S3ncNdYkALBKQCYh0i-0jVMVEYi63N70o8myPHcQ4A0CZldUu2xNlJrJCZvvsYepdawfrne7489IOzQevaVgSOX4ddE_xw5rBunf-RO92HPli7h1_CdrFTq9y3BveOv3G-6eHyyO2Y3QX6XhTD9nr9dXL9HZy_3hzN728nzQSymFiaswLA0ZUQgOWsjZYp4iiKFqda91Usm5NpWspASjThkiKHASWaEyKVZoesrP13nnwnwuKg-ptHGV02pFfRIUVQJlKIfIRlWu0CT7GQEbNg-11-FYIamVSzdTapFqZVCDVaHKMnW4uLOqe2r_Qr7oRuFgDNP75ZSmo2FhyDbU2UDOo1tv_L_wA9JSGUQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1900834226</pqid></control><display><type>article</type><title>Conditional Switch between Frameshifting Regimes upon Translation of dnaX mRNA</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ScienceDirect Journals (5 years ago - present)</source><source>Free Full-Text Journals in Chemistry</source><creator>Caliskan, Neva ; Wohlgemuth, Ingo ; Korniy, Natalia ; Pearson, Michael ; Peske, Frank ; Rodnina, Marina V.</creator><creatorcontrib>Caliskan, Neva ; Wohlgemuth, Ingo ; Korniy, Natalia ; Pearson, Michael ; Peske, Frank ; Rodnina, Marina V.</creatorcontrib><description>Ribosome frameshifting during translation of bacterial dnaX can proceed via different routes, generating a variety of distinct polypeptides. Using kinetic experiments, we show that –1 frameshifting predominantly occurs during translocation of two tRNAs bound to the slippery sequence codons. This pathway depends on a stem-loop mRNA structure downstream of the slippery sequence and operates when aminoacyl-tRNAs are abundant. However, when aminoacyl-tRNAs are in short supply, the ribosome switches to an alternative frameshifting pathway that is independent of a stem-loop. Ribosome stalling at a vacant 0-frame A-site codon results in slippage of the P-site peptidyl-tRNA, allowing for –1-frame decoding. When the –1-frame aminoacyl-tRNA is lacking, the ribosomes switch into –2 frame. Quantitative mass spectrometry shows that the –2-frame product is synthesized in vivo. We suggest that switching between frameshifting routes may enrich gene expression at conditions of aminoacyl-tRNA limitation.
[Display omitted]
•–1 frameshifting predominantly occurs upon translocation of two slippery-site tRNAs•An alternative frameshifting pathway operates when aminoacyl-tRNA supply is limited•Hungry frameshifting is slow and independent of the mRNA secondary structure element•Switching between frameshifting routes can enrich coding capacity of the genome
Caliskan et al. show that ribosomes can change the reading frame depending on aminoacyl-tRNA supply. Ribosome pausing at a hungry codon leads to –1 or –2 frameshifting independent of a regulatory mRNA element normally required for programmed frameshifting. Switching between frameshifting routes can enrich coding capacity upon aminoacyl-tRNA limitation.</description><identifier>ISSN: 1097-2765</identifier><identifier>EISSN: 1097-4164</identifier><identifier>DOI: 10.1016/j.molcel.2017.04.023</identifier><identifier>PMID: 28525745</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Bacterial Proteins - biosynthesis ; Bacterial Proteins - genetics ; DNA Polymerase III - biosynthesis ; DNA Polymerase III - genetics ; dnaX ; Escherichia coli - enzymology ; Escherichia coli - genetics ; Frameshifting, Ribosomal ; Gene Expression Regulation, Bacterial ; Gene Expression Regulation, Enzymologic ; Kinetics ; Mutation ; Nucleic Acid Conformation ; programmed ribosome frameshifting ; protein synthesis ; recoding ; RNA, Bacterial - chemistry ; RNA, Bacterial - genetics ; RNA, Bacterial - metabolism ; RNA, Messenger - chemistry ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; RNA, Transfer, Amino Acyl - chemistry ; RNA, Transfer, Amino Acyl - genetics ; RNA, Transfer, Amino Acyl - metabolism ; Spectrometry, Mass, Electrospray Ionization ; Structure-Activity Relationship ; Tandem Mass Spectrometry ; translation pausing ; translation regulation ; tRNA abundance</subject><ispartof>Molecular cell, 2017-05, Vol.66 (4), p.558-567.e4</ispartof><rights>2017 Elsevier Inc.</rights><rights>Copyright © 2017 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-fb167f0f292a0184bf1b311277da6aac94bdf9ab4400e5afee42602181ff31933</citedby><cites>FETCH-LOGICAL-c408t-fb167f0f292a0184bf1b311277da6aac94bdf9ab4400e5afee42602181ff31933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.molcel.2017.04.023$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28525745$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Caliskan, Neva</creatorcontrib><creatorcontrib>Wohlgemuth, Ingo</creatorcontrib><creatorcontrib>Korniy, Natalia</creatorcontrib><creatorcontrib>Pearson, Michael</creatorcontrib><creatorcontrib>Peske, Frank</creatorcontrib><creatorcontrib>Rodnina, Marina V.</creatorcontrib><title>Conditional Switch between Frameshifting Regimes upon Translation of dnaX mRNA</title><title>Molecular cell</title><addtitle>Mol Cell</addtitle><description>Ribosome frameshifting during translation of bacterial dnaX can proceed via different routes, generating a variety of distinct polypeptides. Using kinetic experiments, we show that –1 frameshifting predominantly occurs during translocation of two tRNAs bound to the slippery sequence codons. This pathway depends on a stem-loop mRNA structure downstream of the slippery sequence and operates when aminoacyl-tRNAs are abundant. However, when aminoacyl-tRNAs are in short supply, the ribosome switches to an alternative frameshifting pathway that is independent of a stem-loop. Ribosome stalling at a vacant 0-frame A-site codon results in slippage of the P-site peptidyl-tRNA, allowing for –1-frame decoding. When the –1-frame aminoacyl-tRNA is lacking, the ribosomes switch into –2 frame. Quantitative mass spectrometry shows that the –2-frame product is synthesized in vivo. We suggest that switching between frameshifting routes may enrich gene expression at conditions of aminoacyl-tRNA limitation.
[Display omitted]
•–1 frameshifting predominantly occurs upon translocation of two slippery-site tRNAs•An alternative frameshifting pathway operates when aminoacyl-tRNA supply is limited•Hungry frameshifting is slow and independent of the mRNA secondary structure element•Switching between frameshifting routes can enrich coding capacity of the genome
Caliskan et al. show that ribosomes can change the reading frame depending on aminoacyl-tRNA supply. Ribosome pausing at a hungry codon leads to –1 or –2 frameshifting independent of a regulatory mRNA element normally required for programmed frameshifting. Switching between frameshifting routes can enrich coding capacity upon aminoacyl-tRNA limitation.</description><subject>Bacterial Proteins - biosynthesis</subject><subject>Bacterial Proteins - genetics</subject><subject>DNA Polymerase III - biosynthesis</subject><subject>DNA Polymerase III - genetics</subject><subject>dnaX</subject><subject>Escherichia coli - enzymology</subject><subject>Escherichia coli - genetics</subject><subject>Frameshifting, Ribosomal</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Gene Expression Regulation, Enzymologic</subject><subject>Kinetics</subject><subject>Mutation</subject><subject>Nucleic Acid Conformation</subject><subject>programmed ribosome frameshifting</subject><subject>protein synthesis</subject><subject>recoding</subject><subject>RNA, Bacterial - chemistry</subject><subject>RNA, Bacterial - genetics</subject><subject>RNA, Bacterial - metabolism</subject><subject>RNA, Messenger - chemistry</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>RNA, Transfer, Amino Acyl - chemistry</subject><subject>RNA, Transfer, Amino Acyl - genetics</subject><subject>RNA, Transfer, Amino Acyl - metabolism</subject><subject>Spectrometry, Mass, Electrospray Ionization</subject><subject>Structure-Activity Relationship</subject><subject>Tandem Mass Spectrometry</subject><subject>translation pausing</subject><subject>translation regulation</subject><subject>tRNA abundance</subject><issn>1097-2765</issn><issn>1097-4164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtLxDAQx4Movr-BSI5ets6k6esiyOILRMEHeAtpO9EsbbImXRe_vV129ehpZuD3n2F-jJ0gJAiYn8-S3ncNdYkALBKQCYh0i-0jVMVEYi63N70o8myPHcQ4A0CZldUu2xNlJrJCZvvsYepdawfrne7489IOzQevaVgSOX4ddE_xw5rBunf-RO92HPli7h1_CdrFTq9y3BveOv3G-6eHyyO2Y3QX6XhTD9nr9dXL9HZy_3hzN728nzQSymFiaswLA0ZUQgOWsjZYp4iiKFqda91Usm5NpWspASjThkiKHASWaEyKVZoesrP13nnwnwuKg-ptHGV02pFfRIUVQJlKIfIRlWu0CT7GQEbNg-11-FYIamVSzdTapFqZVCDVaHKMnW4uLOqe2r_Qr7oRuFgDNP75ZSmo2FhyDbU2UDOo1tv_L_wA9JSGUQ</recordid><startdate>20170518</startdate><enddate>20170518</enddate><creator>Caliskan, Neva</creator><creator>Wohlgemuth, Ingo</creator><creator>Korniy, Natalia</creator><creator>Pearson, Michael</creator><creator>Peske, Frank</creator><creator>Rodnina, Marina V.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20170518</creationdate><title>Conditional Switch between Frameshifting Regimes upon Translation of dnaX mRNA</title><author>Caliskan, Neva ; Wohlgemuth, Ingo ; Korniy, Natalia ; Pearson, Michael ; Peske, Frank ; Rodnina, Marina V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-fb167f0f292a0184bf1b311277da6aac94bdf9ab4400e5afee42602181ff31933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bacterial Proteins - biosynthesis</topic><topic>Bacterial Proteins - genetics</topic><topic>DNA Polymerase III - biosynthesis</topic><topic>DNA Polymerase III - genetics</topic><topic>dnaX</topic><topic>Escherichia coli - enzymology</topic><topic>Escherichia coli - genetics</topic><topic>Frameshifting, Ribosomal</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Gene Expression Regulation, Enzymologic</topic><topic>Kinetics</topic><topic>Mutation</topic><topic>Nucleic Acid Conformation</topic><topic>programmed ribosome frameshifting</topic><topic>protein synthesis</topic><topic>recoding</topic><topic>RNA, Bacterial - chemistry</topic><topic>RNA, Bacterial - genetics</topic><topic>RNA, Bacterial - metabolism</topic><topic>RNA, Messenger - chemistry</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>RNA, Transfer, Amino Acyl - chemistry</topic><topic>RNA, Transfer, Amino Acyl - genetics</topic><topic>RNA, Transfer, Amino Acyl - metabolism</topic><topic>Spectrometry, Mass, Electrospray Ionization</topic><topic>Structure-Activity Relationship</topic><topic>Tandem Mass Spectrometry</topic><topic>translation pausing</topic><topic>translation regulation</topic><topic>tRNA abundance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caliskan, Neva</creatorcontrib><creatorcontrib>Wohlgemuth, Ingo</creatorcontrib><creatorcontrib>Korniy, Natalia</creatorcontrib><creatorcontrib>Pearson, Michael</creatorcontrib><creatorcontrib>Peske, Frank</creatorcontrib><creatorcontrib>Rodnina, Marina V.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caliskan, Neva</au><au>Wohlgemuth, Ingo</au><au>Korniy, Natalia</au><au>Pearson, Michael</au><au>Peske, Frank</au><au>Rodnina, Marina V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conditional Switch between Frameshifting Regimes upon Translation of dnaX mRNA</atitle><jtitle>Molecular cell</jtitle><addtitle>Mol Cell</addtitle><date>2017-05-18</date><risdate>2017</risdate><volume>66</volume><issue>4</issue><spage>558</spage><epage>567.e4</epage><pages>558-567.e4</pages><issn>1097-2765</issn><eissn>1097-4164</eissn><abstract>Ribosome frameshifting during translation of bacterial dnaX can proceed via different routes, generating a variety of distinct polypeptides. Using kinetic experiments, we show that –1 frameshifting predominantly occurs during translocation of two tRNAs bound to the slippery sequence codons. This pathway depends on a stem-loop mRNA structure downstream of the slippery sequence and operates when aminoacyl-tRNAs are abundant. However, when aminoacyl-tRNAs are in short supply, the ribosome switches to an alternative frameshifting pathway that is independent of a stem-loop. Ribosome stalling at a vacant 0-frame A-site codon results in slippage of the P-site peptidyl-tRNA, allowing for –1-frame decoding. When the –1-frame aminoacyl-tRNA is lacking, the ribosomes switch into –2 frame. Quantitative mass spectrometry shows that the –2-frame product is synthesized in vivo. We suggest that switching between frameshifting routes may enrich gene expression at conditions of aminoacyl-tRNA limitation.
[Display omitted]
•–1 frameshifting predominantly occurs upon translocation of two slippery-site tRNAs•An alternative frameshifting pathway operates when aminoacyl-tRNA supply is limited•Hungry frameshifting is slow and independent of the mRNA secondary structure element•Switching between frameshifting routes can enrich coding capacity of the genome
Caliskan et al. show that ribosomes can change the reading frame depending on aminoacyl-tRNA supply. Ribosome pausing at a hungry codon leads to –1 or –2 frameshifting independent of a regulatory mRNA element normally required for programmed frameshifting. Switching between frameshifting routes can enrich coding capacity upon aminoacyl-tRNA limitation.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>28525745</pmid><doi>10.1016/j.molcel.2017.04.023</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1097-2765 |
ispartof | Molecular cell, 2017-05, Vol.66 (4), p.558-567.e4 |
issn | 1097-2765 1097-4164 |
language | eng |
recordid | cdi_proquest_miscellaneous_1900834226 |
source | MEDLINE; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ScienceDirect Journals (5 years ago - present); Free Full-Text Journals in Chemistry |
subjects | Bacterial Proteins - biosynthesis Bacterial Proteins - genetics DNA Polymerase III - biosynthesis DNA Polymerase III - genetics dnaX Escherichia coli - enzymology Escherichia coli - genetics Frameshifting, Ribosomal Gene Expression Regulation, Bacterial Gene Expression Regulation, Enzymologic Kinetics Mutation Nucleic Acid Conformation programmed ribosome frameshifting protein synthesis recoding RNA, Bacterial - chemistry RNA, Bacterial - genetics RNA, Bacterial - metabolism RNA, Messenger - chemistry RNA, Messenger - genetics RNA, Messenger - metabolism RNA, Transfer, Amino Acyl - chemistry RNA, Transfer, Amino Acyl - genetics RNA, Transfer, Amino Acyl - metabolism Spectrometry, Mass, Electrospray Ionization Structure-Activity Relationship Tandem Mass Spectrometry translation pausing translation regulation tRNA abundance |
title | Conditional Switch between Frameshifting Regimes upon Translation of dnaX mRNA |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T13%3A20%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conditional%20Switch%20between%20Frameshifting%20Regimes%20upon%20Translation%20of%20dnaX%20mRNA&rft.jtitle=Molecular%20cell&rft.au=Caliskan,%20Neva&rft.date=2017-05-18&rft.volume=66&rft.issue=4&rft.spage=558&rft.epage=567.e4&rft.pages=558-567.e4&rft.issn=1097-2765&rft.eissn=1097-4164&rft_id=info:doi/10.1016/j.molcel.2017.04.023&rft_dat=%3Cproquest_cross%3E1900834226%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1900834226&rft_id=info:pmid/28525745&rft_els_id=S1097276517303088&rfr_iscdi=true |