Binder-Free N- and O‑Rich Carbon Nanofiber Anodes for Long Cycle Life K‑Ion Batteries

Carbon nanofibers produced by electrospinning of polyacrylonitrile polymer and subsequent carbonization were tested as freestanding potassium-ion anodes. The effect of oxygen functionalization on K-ion carbon anode performance was tested for the first time via plasma oxidation of prepared carbon nan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2017-05, Vol.9 (21), p.17872-17881
Hauptverfasser: Adams, Ryan A, Syu, Jia-Min, Zhao, Yunpu, Lo, Chieh-Tsung, Varma, Arvind, Pol, Vilas G
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17881
container_issue 21
container_start_page 17872
container_title ACS applied materials & interfaces
container_volume 9
creator Adams, Ryan A
Syu, Jia-Min
Zhao, Yunpu
Lo, Chieh-Tsung
Varma, Arvind
Pol, Vilas G
description Carbon nanofibers produced by electrospinning of polyacrylonitrile polymer and subsequent carbonization were tested as freestanding potassium-ion anodes. The effect of oxygen functionalization on K-ion carbon anode performance was tested for the first time via plasma oxidation of prepared carbon nanofibers. The produced materials exhibited exceptional cycling stability through the amorphous carbon structuring and one-dimensional architecture accommodating significant material expansion upon K+ intercalation, resulting in a stable capacity of 170 mAh g–1 after 1900 cycles at 1C rate for N-rich carbon nanofibers. Excellent rate performance of 110 mAh g–1 at 10C rate, as compared to 230 mAh g–1 at C/10 rate, resulted from the K-ion surface storage mechanism and the increased K+ solid diffusion coefficient in carbon nanofibers as compared to graphite. Plasma oxidation treatment augmented surface storage of K+ by oxygen functionalities but increased material charge transfer resistance as compared to N-rich carbon fibers. Ex situ characterization revealed that the one-dimensional structure was maintained throughout cycling, despite the increase in graphitic interlattice spacing from 0.37 to 0.46 nm. The carbon nanofibers demonstrate great potential as an anode material for potassium-ion batteries with superior cycling stability and rate capability over previously reported carbon materials.
doi_str_mv 10.1021/acsami.7b02476
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1899793265</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1899793265</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-5eaf81660770a19251cb4eb8e850e4ee7126832344139001562dcfd855cef14c3</originalsourceid><addsrcrecordid>eNp1kLFOwzAURS0EoqWwMiKPCCnFduzEGduIQkXUSggGpshxXiBVEhc7GbrxC_wiX0JQSjemd4dzr_QOQpeUTClh9FZpp-pyGmaE8TA4QmMace5JJtjxIXM-QmfObQgJfEbEKRoxyaWIQjFGr_OyycF6CwuAVx5WTY7X359fT6V-x7GymWnwSjWmKDOweNaYHBwujMWJad5wvNMV4KQsAD_2pWUPz1Xbgi3BnaOTQlUOLvZ3gl4Wd8_xg5es75fxLPGU75PWE6AKSYOAhCFRNGKC6oxDJkEKAhwgpCyQPvM5p35ECBUBy3WRSyE0FJRrf4Kuh92tNR8duDatS6ehqlQDpnMplVEURj4LRI9OB1Rb45yFIt3aslZ2l1KS_upMB53pXmdfuNpvd1kN-QH_89cDNwPQF9ON6WzTv_rf2g9TJX6v</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899793265</pqid></control><display><type>article</type><title>Binder-Free N- and O‑Rich Carbon Nanofiber Anodes for Long Cycle Life K‑Ion Batteries</title><source>ACS Publications</source><creator>Adams, Ryan A ; Syu, Jia-Min ; Zhao, Yunpu ; Lo, Chieh-Tsung ; Varma, Arvind ; Pol, Vilas G</creator><creatorcontrib>Adams, Ryan A ; Syu, Jia-Min ; Zhao, Yunpu ; Lo, Chieh-Tsung ; Varma, Arvind ; Pol, Vilas G</creatorcontrib><description>Carbon nanofibers produced by electrospinning of polyacrylonitrile polymer and subsequent carbonization were tested as freestanding potassium-ion anodes. The effect of oxygen functionalization on K-ion carbon anode performance was tested for the first time via plasma oxidation of prepared carbon nanofibers. The produced materials exhibited exceptional cycling stability through the amorphous carbon structuring and one-dimensional architecture accommodating significant material expansion upon K+ intercalation, resulting in a stable capacity of 170 mAh g–1 after 1900 cycles at 1C rate for N-rich carbon nanofibers. Excellent rate performance of 110 mAh g–1 at 10C rate, as compared to 230 mAh g–1 at C/10 rate, resulted from the K-ion surface storage mechanism and the increased K+ solid diffusion coefficient in carbon nanofibers as compared to graphite. Plasma oxidation treatment augmented surface storage of K+ by oxygen functionalities but increased material charge transfer resistance as compared to N-rich carbon fibers. Ex situ characterization revealed that the one-dimensional structure was maintained throughout cycling, despite the increase in graphitic interlattice spacing from 0.37 to 0.46 nm. The carbon nanofibers demonstrate great potential as an anode material for potassium-ion batteries with superior cycling stability and rate capability over previously reported carbon materials.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.7b02476</identifier><identifier>PMID: 28485975</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2017-05, Vol.9 (21), p.17872-17881</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-5eaf81660770a19251cb4eb8e850e4ee7126832344139001562dcfd855cef14c3</citedby><cites>FETCH-LOGICAL-a330t-5eaf81660770a19251cb4eb8e850e4ee7126832344139001562dcfd855cef14c3</cites><orcidid>0000-0002-4866-117X ; 0000-0002-3472-5929</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.7b02476$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.7b02476$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28485975$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Adams, Ryan A</creatorcontrib><creatorcontrib>Syu, Jia-Min</creatorcontrib><creatorcontrib>Zhao, Yunpu</creatorcontrib><creatorcontrib>Lo, Chieh-Tsung</creatorcontrib><creatorcontrib>Varma, Arvind</creatorcontrib><creatorcontrib>Pol, Vilas G</creatorcontrib><title>Binder-Free N- and O‑Rich Carbon Nanofiber Anodes for Long Cycle Life K‑Ion Batteries</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Carbon nanofibers produced by electrospinning of polyacrylonitrile polymer and subsequent carbonization were tested as freestanding potassium-ion anodes. The effect of oxygen functionalization on K-ion carbon anode performance was tested for the first time via plasma oxidation of prepared carbon nanofibers. The produced materials exhibited exceptional cycling stability through the amorphous carbon structuring and one-dimensional architecture accommodating significant material expansion upon K+ intercalation, resulting in a stable capacity of 170 mAh g–1 after 1900 cycles at 1C rate for N-rich carbon nanofibers. Excellent rate performance of 110 mAh g–1 at 10C rate, as compared to 230 mAh g–1 at C/10 rate, resulted from the K-ion surface storage mechanism and the increased K+ solid diffusion coefficient in carbon nanofibers as compared to graphite. Plasma oxidation treatment augmented surface storage of K+ by oxygen functionalities but increased material charge transfer resistance as compared to N-rich carbon fibers. Ex situ characterization revealed that the one-dimensional structure was maintained throughout cycling, despite the increase in graphitic interlattice spacing from 0.37 to 0.46 nm. The carbon nanofibers demonstrate great potential as an anode material for potassium-ion batteries with superior cycling stability and rate capability over previously reported carbon materials.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kLFOwzAURS0EoqWwMiKPCCnFduzEGduIQkXUSggGpshxXiBVEhc7GbrxC_wiX0JQSjemd4dzr_QOQpeUTClh9FZpp-pyGmaE8TA4QmMace5JJtjxIXM-QmfObQgJfEbEKRoxyaWIQjFGr_OyycF6CwuAVx5WTY7X359fT6V-x7GymWnwSjWmKDOweNaYHBwujMWJad5wvNMV4KQsAD_2pWUPz1Xbgi3BnaOTQlUOLvZ3gl4Wd8_xg5es75fxLPGU75PWE6AKSYOAhCFRNGKC6oxDJkEKAhwgpCyQPvM5p35ECBUBy3WRSyE0FJRrf4Kuh92tNR8duDatS6ehqlQDpnMplVEURj4LRI9OB1Rb45yFIt3aslZ2l1KS_upMB53pXmdfuNpvd1kN-QH_89cDNwPQF9ON6WzTv_rf2g9TJX6v</recordid><startdate>20170531</startdate><enddate>20170531</enddate><creator>Adams, Ryan A</creator><creator>Syu, Jia-Min</creator><creator>Zhao, Yunpu</creator><creator>Lo, Chieh-Tsung</creator><creator>Varma, Arvind</creator><creator>Pol, Vilas G</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4866-117X</orcidid><orcidid>https://orcid.org/0000-0002-3472-5929</orcidid></search><sort><creationdate>20170531</creationdate><title>Binder-Free N- and O‑Rich Carbon Nanofiber Anodes for Long Cycle Life K‑Ion Batteries</title><author>Adams, Ryan A ; Syu, Jia-Min ; Zhao, Yunpu ; Lo, Chieh-Tsung ; Varma, Arvind ; Pol, Vilas G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-5eaf81660770a19251cb4eb8e850e4ee7126832344139001562dcfd855cef14c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adams, Ryan A</creatorcontrib><creatorcontrib>Syu, Jia-Min</creatorcontrib><creatorcontrib>Zhao, Yunpu</creatorcontrib><creatorcontrib>Lo, Chieh-Tsung</creatorcontrib><creatorcontrib>Varma, Arvind</creatorcontrib><creatorcontrib>Pol, Vilas G</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adams, Ryan A</au><au>Syu, Jia-Min</au><au>Zhao, Yunpu</au><au>Lo, Chieh-Tsung</au><au>Varma, Arvind</au><au>Pol, Vilas G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Binder-Free N- and O‑Rich Carbon Nanofiber Anodes for Long Cycle Life K‑Ion Batteries</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2017-05-31</date><risdate>2017</risdate><volume>9</volume><issue>21</issue><spage>17872</spage><epage>17881</epage><pages>17872-17881</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Carbon nanofibers produced by electrospinning of polyacrylonitrile polymer and subsequent carbonization were tested as freestanding potassium-ion anodes. The effect of oxygen functionalization on K-ion carbon anode performance was tested for the first time via plasma oxidation of prepared carbon nanofibers. The produced materials exhibited exceptional cycling stability through the amorphous carbon structuring and one-dimensional architecture accommodating significant material expansion upon K+ intercalation, resulting in a stable capacity of 170 mAh g–1 after 1900 cycles at 1C rate for N-rich carbon nanofibers. Excellent rate performance of 110 mAh g–1 at 10C rate, as compared to 230 mAh g–1 at C/10 rate, resulted from the K-ion surface storage mechanism and the increased K+ solid diffusion coefficient in carbon nanofibers as compared to graphite. Plasma oxidation treatment augmented surface storage of K+ by oxygen functionalities but increased material charge transfer resistance as compared to N-rich carbon fibers. Ex situ characterization revealed that the one-dimensional structure was maintained throughout cycling, despite the increase in graphitic interlattice spacing from 0.37 to 0.46 nm. The carbon nanofibers demonstrate great potential as an anode material for potassium-ion batteries with superior cycling stability and rate capability over previously reported carbon materials.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28485975</pmid><doi>10.1021/acsami.7b02476</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4866-117X</orcidid><orcidid>https://orcid.org/0000-0002-3472-5929</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2017-05, Vol.9 (21), p.17872-17881
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_1899793265
source ACS Publications
title Binder-Free N- and O‑Rich Carbon Nanofiber Anodes for Long Cycle Life K‑Ion Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T15%3A42%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Binder-Free%20N-%20and%20O%E2%80%91Rich%20Carbon%20Nanofiber%20Anodes%20for%20Long%20Cycle%20Life%20K%E2%80%91Ion%20Batteries&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Adams,%20Ryan%20A&rft.date=2017-05-31&rft.volume=9&rft.issue=21&rft.spage=17872&rft.epage=17881&rft.pages=17872-17881&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.7b02476&rft_dat=%3Cproquest_cross%3E1899793265%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899793265&rft_id=info:pmid/28485975&rfr_iscdi=true