Brain‐Inspired Photonic Neuromorphic Devices using Photodynamic Amorphous Oxide Semiconductors and their Persistent Photoconductivity
The combination of a neuromorphic architecture and photonic computing may open up a new era for computational systems owing to the possibility of attaining high bandwidths and the low‐computation‐power requirements. Here, the demonstration of photonic neuromorphic devices based on amorphous oxide se...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2017-07, Vol.29 (28), p.n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 28 |
container_start_page | |
container_title | Advanced materials (Weinheim) |
container_volume | 29 |
creator | Lee, Minkyung Lee, Woobin Choi, Seungbeom Jo, Jeong‐Wan Kim, Jaekyun Park, Sung Kyu Kim, Yong‐Hoon |
description | The combination of a neuromorphic architecture and photonic computing may open up a new era for computational systems owing to the possibility of attaining high bandwidths and the low‐computation‐power requirements. Here, the demonstration of photonic neuromorphic devices based on amorphous oxide semiconductors (AOSs) that mimic major synaptic functions, such as short‐term memory/long‐term memory, spike‐timing‐dependent plasticity, and neural facilitation, is reported. The synaptic functions are successfully emulated using the inherent persistent photoconductivity (PPC) characteristic of AOSs. Systematic analysis of the dynamics of photogenerated carriers for various AOSs is carried out to understand the fundamental mechanisms underlying the photoinduced carrier‐generation and relaxation behaviors, and to search for a proper channel material for photonic neuromorphic devices. It is found that the activation energy for the neutralization of ionized oxygen vacancies has a significant influence on the photocarrier‐generation and time‐variant recovery behaviors of AOSs, affecting the PPC behavior.
A brain‐inspired photonic neuromorphic device is demonstrated using an amorphous indium‐gallium‐zinc‐oxide film. By utilizing the persistent photoconductivity behavior, short‐term memory/long‐term memory, spike‐timing‐dependent plasticity, and neural facilitation are emulated, which are the important synaptic functions for learning and memory. This work may open up new possibilities to realize ultrafast and massive parallel synaptic computing systems based on photonic neuromorphic devices. |
doi_str_mv | 10.1002/adma.201700951 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1899792018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1899792018</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3731-9c2185a94b666a31fad9f7b567bad49c8bf887c5ea1e5a93e0c300b2d8ce5ec3</originalsourceid><addsrcrecordid>eNqF0UFPHCEYBmDSaHSrvfZoJvHiZVZgZhg4bldbTbSa1Dth4BsXswNbmFH31luv_Y39JUVn1aQXTwR4eAO8CH0meEowpsfKdGpKMakxFhX5gCakoiQv02QLTbAoqlywku-ijzHe4WQYZjtol_KKlJiVE_T7S1DW_f3159zFlQ1gsuuF772zOvsOQ_CdD6tFmpzAvdUQsyFadzsas3aqS1uzZ-OHmF09WgPZD0ir3plB9z7ETDmT9QuwIbuGEG3swfVjwAbZe9uv99F2q5YRPm3GPXTz9fRmfpZfXH07n88ucl3UBcmFpoRXSpQNY0wVpFVGtHVTsbpRphSaNy3nta5AEUisAKwLjBtquIYKdLGHjsbYVfA_B4i97GzUsFwqB-kFknAhapH-kyd6-B-980Nw6XKSJMEopYIlNR2VDj7GAK1cBdupsJYEy6eG5FND8rWhdOBgEzs0HZhX_lJJAmIED3YJ63fi5OzkcvYW_g-omaGv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1920622296</pqid></control><display><type>article</type><title>Brain‐Inspired Photonic Neuromorphic Devices using Photodynamic Amorphous Oxide Semiconductors and their Persistent Photoconductivity</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lee, Minkyung ; Lee, Woobin ; Choi, Seungbeom ; Jo, Jeong‐Wan ; Kim, Jaekyun ; Park, Sung Kyu ; Kim, Yong‐Hoon</creator><creatorcontrib>Lee, Minkyung ; Lee, Woobin ; Choi, Seungbeom ; Jo, Jeong‐Wan ; Kim, Jaekyun ; Park, Sung Kyu ; Kim, Yong‐Hoon</creatorcontrib><description>The combination of a neuromorphic architecture and photonic computing may open up a new era for computational systems owing to the possibility of attaining high bandwidths and the low‐computation‐power requirements. Here, the demonstration of photonic neuromorphic devices based on amorphous oxide semiconductors (AOSs) that mimic major synaptic functions, such as short‐term memory/long‐term memory, spike‐timing‐dependent plasticity, and neural facilitation, is reported. The synaptic functions are successfully emulated using the inherent persistent photoconductivity (PPC) characteristic of AOSs. Systematic analysis of the dynamics of photogenerated carriers for various AOSs is carried out to understand the fundamental mechanisms underlying the photoinduced carrier‐generation and relaxation behaviors, and to search for a proper channel material for photonic neuromorphic devices. It is found that the activation energy for the neutralization of ionized oxygen vacancies has a significant influence on the photocarrier‐generation and time‐variant recovery behaviors of AOSs, affecting the PPC behavior.
A brain‐inspired photonic neuromorphic device is demonstrated using an amorphous indium‐gallium‐zinc‐oxide film. By utilizing the persistent photoconductivity behavior, short‐term memory/long‐term memory, spike‐timing‐dependent plasticity, and neural facilitation are emulated, which are the important synaptic functions for learning and memory. This work may open up new possibilities to realize ultrafast and massive parallel synaptic computing systems based on photonic neuromorphic devices.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201700951</identifier><identifier>PMID: 28514064</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Activation energy ; amorphous oxide semiconductors ; Amorphous semiconductors ; Brain ; Computer architecture ; Devices ; Materials science ; Neuromorphic computing ; persistent photoconductivity ; Photoconductivity ; photonic neuromorphic devices ; Photonics ; Semiconductors ; Short term ; synaptic devices ; Vacancies</subject><ispartof>Advanced materials (Weinheim), 2017-07, Vol.29 (28), p.n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3731-9c2185a94b666a31fad9f7b567bad49c8bf887c5ea1e5a93e0c300b2d8ce5ec3</citedby><cites>FETCH-LOGICAL-c3731-9c2185a94b666a31fad9f7b567bad49c8bf887c5ea1e5a93e0c300b2d8ce5ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.201700951$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.201700951$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28514064$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Minkyung</creatorcontrib><creatorcontrib>Lee, Woobin</creatorcontrib><creatorcontrib>Choi, Seungbeom</creatorcontrib><creatorcontrib>Jo, Jeong‐Wan</creatorcontrib><creatorcontrib>Kim, Jaekyun</creatorcontrib><creatorcontrib>Park, Sung Kyu</creatorcontrib><creatorcontrib>Kim, Yong‐Hoon</creatorcontrib><title>Brain‐Inspired Photonic Neuromorphic Devices using Photodynamic Amorphous Oxide Semiconductors and their Persistent Photoconductivity</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>The combination of a neuromorphic architecture and photonic computing may open up a new era for computational systems owing to the possibility of attaining high bandwidths and the low‐computation‐power requirements. Here, the demonstration of photonic neuromorphic devices based on amorphous oxide semiconductors (AOSs) that mimic major synaptic functions, such as short‐term memory/long‐term memory, spike‐timing‐dependent plasticity, and neural facilitation, is reported. The synaptic functions are successfully emulated using the inherent persistent photoconductivity (PPC) characteristic of AOSs. Systematic analysis of the dynamics of photogenerated carriers for various AOSs is carried out to understand the fundamental mechanisms underlying the photoinduced carrier‐generation and relaxation behaviors, and to search for a proper channel material for photonic neuromorphic devices. It is found that the activation energy for the neutralization of ionized oxygen vacancies has a significant influence on the photocarrier‐generation and time‐variant recovery behaviors of AOSs, affecting the PPC behavior.
A brain‐inspired photonic neuromorphic device is demonstrated using an amorphous indium‐gallium‐zinc‐oxide film. By utilizing the persistent photoconductivity behavior, short‐term memory/long‐term memory, spike‐timing‐dependent plasticity, and neural facilitation are emulated, which are the important synaptic functions for learning and memory. This work may open up new possibilities to realize ultrafast and massive parallel synaptic computing systems based on photonic neuromorphic devices.</description><subject>Activation energy</subject><subject>amorphous oxide semiconductors</subject><subject>Amorphous semiconductors</subject><subject>Brain</subject><subject>Computer architecture</subject><subject>Devices</subject><subject>Materials science</subject><subject>Neuromorphic computing</subject><subject>persistent photoconductivity</subject><subject>Photoconductivity</subject><subject>photonic neuromorphic devices</subject><subject>Photonics</subject><subject>Semiconductors</subject><subject>Short term</subject><subject>synaptic devices</subject><subject>Vacancies</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqF0UFPHCEYBmDSaHSrvfZoJvHiZVZgZhg4bldbTbSa1Dth4BsXswNbmFH31luv_Y39JUVn1aQXTwR4eAO8CH0meEowpsfKdGpKMakxFhX5gCakoiQv02QLTbAoqlywku-ijzHe4WQYZjtol_KKlJiVE_T7S1DW_f3159zFlQ1gsuuF772zOvsOQ_CdD6tFmpzAvdUQsyFadzsas3aqS1uzZ-OHmF09WgPZD0ir3plB9z7ETDmT9QuwIbuGEG3swfVjwAbZe9uv99F2q5YRPm3GPXTz9fRmfpZfXH07n88ucl3UBcmFpoRXSpQNY0wVpFVGtHVTsbpRphSaNy3nta5AEUisAKwLjBtquIYKdLGHjsbYVfA_B4i97GzUsFwqB-kFknAhapH-kyd6-B-980Nw6XKSJMEopYIlNR2VDj7GAK1cBdupsJYEy6eG5FND8rWhdOBgEzs0HZhX_lJJAmIED3YJ63fi5OzkcvYW_g-omaGv</recordid><startdate>201707</startdate><enddate>201707</enddate><creator>Lee, Minkyung</creator><creator>Lee, Woobin</creator><creator>Choi, Seungbeom</creator><creator>Jo, Jeong‐Wan</creator><creator>Kim, Jaekyun</creator><creator>Park, Sung Kyu</creator><creator>Kim, Yong‐Hoon</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope></search><sort><creationdate>201707</creationdate><title>Brain‐Inspired Photonic Neuromorphic Devices using Photodynamic Amorphous Oxide Semiconductors and their Persistent Photoconductivity</title><author>Lee, Minkyung ; Lee, Woobin ; Choi, Seungbeom ; Jo, Jeong‐Wan ; Kim, Jaekyun ; Park, Sung Kyu ; Kim, Yong‐Hoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3731-9c2185a94b666a31fad9f7b567bad49c8bf887c5ea1e5a93e0c300b2d8ce5ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Activation energy</topic><topic>amorphous oxide semiconductors</topic><topic>Amorphous semiconductors</topic><topic>Brain</topic><topic>Computer architecture</topic><topic>Devices</topic><topic>Materials science</topic><topic>Neuromorphic computing</topic><topic>persistent photoconductivity</topic><topic>Photoconductivity</topic><topic>photonic neuromorphic devices</topic><topic>Photonics</topic><topic>Semiconductors</topic><topic>Short term</topic><topic>synaptic devices</topic><topic>Vacancies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Minkyung</creatorcontrib><creatorcontrib>Lee, Woobin</creatorcontrib><creatorcontrib>Choi, Seungbeom</creatorcontrib><creatorcontrib>Jo, Jeong‐Wan</creatorcontrib><creatorcontrib>Kim, Jaekyun</creatorcontrib><creatorcontrib>Park, Sung Kyu</creatorcontrib><creatorcontrib>Kim, Yong‐Hoon</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Minkyung</au><au>Lee, Woobin</au><au>Choi, Seungbeom</au><au>Jo, Jeong‐Wan</au><au>Kim, Jaekyun</au><au>Park, Sung Kyu</au><au>Kim, Yong‐Hoon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Brain‐Inspired Photonic Neuromorphic Devices using Photodynamic Amorphous Oxide Semiconductors and their Persistent Photoconductivity</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2017-07</date><risdate>2017</risdate><volume>29</volume><issue>28</issue><epage>n/a</epage><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>The combination of a neuromorphic architecture and photonic computing may open up a new era for computational systems owing to the possibility of attaining high bandwidths and the low‐computation‐power requirements. Here, the demonstration of photonic neuromorphic devices based on amorphous oxide semiconductors (AOSs) that mimic major synaptic functions, such as short‐term memory/long‐term memory, spike‐timing‐dependent plasticity, and neural facilitation, is reported. The synaptic functions are successfully emulated using the inherent persistent photoconductivity (PPC) characteristic of AOSs. Systematic analysis of the dynamics of photogenerated carriers for various AOSs is carried out to understand the fundamental mechanisms underlying the photoinduced carrier‐generation and relaxation behaviors, and to search for a proper channel material for photonic neuromorphic devices. It is found that the activation energy for the neutralization of ionized oxygen vacancies has a significant influence on the photocarrier‐generation and time‐variant recovery behaviors of AOSs, affecting the PPC behavior.
A brain‐inspired photonic neuromorphic device is demonstrated using an amorphous indium‐gallium‐zinc‐oxide film. By utilizing the persistent photoconductivity behavior, short‐term memory/long‐term memory, spike‐timing‐dependent plasticity, and neural facilitation are emulated, which are the important synaptic functions for learning and memory. This work may open up new possibilities to realize ultrafast and massive parallel synaptic computing systems based on photonic neuromorphic devices.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28514064</pmid><doi>10.1002/adma.201700951</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2017-07, Vol.29 (28), p.n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_1899792018 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Activation energy amorphous oxide semiconductors Amorphous semiconductors Brain Computer architecture Devices Materials science Neuromorphic computing persistent photoconductivity Photoconductivity photonic neuromorphic devices Photonics Semiconductors Short term synaptic devices Vacancies |
title | Brain‐Inspired Photonic Neuromorphic Devices using Photodynamic Amorphous Oxide Semiconductors and their Persistent Photoconductivity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T17%3A35%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Brain%E2%80%90Inspired%20Photonic%20Neuromorphic%20Devices%20using%20Photodynamic%20Amorphous%20Oxide%20Semiconductors%20and%20their%20Persistent%20Photoconductivity&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Lee,%20Minkyung&rft.date=2017-07&rft.volume=29&rft.issue=28&rft.epage=n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201700951&rft_dat=%3Cproquest_cross%3E1899792018%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1920622296&rft_id=info:pmid/28514064&rfr_iscdi=true |