Brain‐Inspired Photonic Neuromorphic Devices using Photodynamic Amorphous Oxide Semiconductors and their Persistent Photoconductivity

The combination of a neuromorphic architecture and photonic computing may open up a new era for computational systems owing to the possibility of attaining high bandwidths and the low‐computation‐power requirements. Here, the demonstration of photonic neuromorphic devices based on amorphous oxide se...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2017-07, Vol.29 (28), p.n/a
Hauptverfasser: Lee, Minkyung, Lee, Woobin, Choi, Seungbeom, Jo, Jeong‐Wan, Kim, Jaekyun, Park, Sung Kyu, Kim, Yong‐Hoon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 28
container_start_page
container_title Advanced materials (Weinheim)
container_volume 29
creator Lee, Minkyung
Lee, Woobin
Choi, Seungbeom
Jo, Jeong‐Wan
Kim, Jaekyun
Park, Sung Kyu
Kim, Yong‐Hoon
description The combination of a neuromorphic architecture and photonic computing may open up a new era for computational systems owing to the possibility of attaining high bandwidths and the low‐computation‐power requirements. Here, the demonstration of photonic neuromorphic devices based on amorphous oxide semiconductors (AOSs) that mimic major synaptic functions, such as short‐term memory/long‐term memory, spike‐timing‐dependent plasticity, and neural facilitation, is reported. The synaptic functions are successfully emulated using the inherent persistent photoconductivity (PPC) characteristic of AOSs. Systematic analysis of the dynamics of photogenerated carriers for various AOSs is carried out to understand the fundamental mechanisms underlying the photoinduced carrier‐generation and relaxation behaviors, and to search for a proper channel material for photonic neuromorphic devices. It is found that the activation energy for the neutralization of ionized oxygen vacancies has a significant influence on the photocarrier‐generation and time‐variant recovery behaviors of AOSs, affecting the PPC behavior. A brain‐inspired photonic neuromorphic device is demonstrated using an amorphous indium‐gallium‐zinc‐oxide film. By utilizing the persistent photoconductivity behavior, short‐term memory/long‐term memory, spike‐timing‐dependent plasticity, and neural facilitation are emulated, which are the important synaptic functions for learning and memory. This work may open up new possibilities to realize ultrafast and massive parallel synaptic computing systems based on photonic neuromorphic devices.
doi_str_mv 10.1002/adma.201700951
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1899792018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1899792018</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3731-9c2185a94b666a31fad9f7b567bad49c8bf887c5ea1e5a93e0c300b2d8ce5ec3</originalsourceid><addsrcrecordid>eNqF0UFPHCEYBmDSaHSrvfZoJvHiZVZgZhg4bldbTbSa1Dth4BsXswNbmFH31luv_Y39JUVn1aQXTwR4eAO8CH0meEowpsfKdGpKMakxFhX5gCakoiQv02QLTbAoqlywku-ijzHe4WQYZjtol_KKlJiVE_T7S1DW_f3159zFlQ1gsuuF772zOvsOQ_CdD6tFmpzAvdUQsyFadzsas3aqS1uzZ-OHmF09WgPZD0ir3plB9z7ETDmT9QuwIbuGEG3swfVjwAbZe9uv99F2q5YRPm3GPXTz9fRmfpZfXH07n88ucl3UBcmFpoRXSpQNY0wVpFVGtHVTsbpRphSaNy3nta5AEUisAKwLjBtquIYKdLGHjsbYVfA_B4i97GzUsFwqB-kFknAhapH-kyd6-B-980Nw6XKSJMEopYIlNR2VDj7GAK1cBdupsJYEy6eG5FND8rWhdOBgEzs0HZhX_lJJAmIED3YJ63fi5OzkcvYW_g-omaGv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1920622296</pqid></control><display><type>article</type><title>Brain‐Inspired Photonic Neuromorphic Devices using Photodynamic Amorphous Oxide Semiconductors and their Persistent Photoconductivity</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lee, Minkyung ; Lee, Woobin ; Choi, Seungbeom ; Jo, Jeong‐Wan ; Kim, Jaekyun ; Park, Sung Kyu ; Kim, Yong‐Hoon</creator><creatorcontrib>Lee, Minkyung ; Lee, Woobin ; Choi, Seungbeom ; Jo, Jeong‐Wan ; Kim, Jaekyun ; Park, Sung Kyu ; Kim, Yong‐Hoon</creatorcontrib><description>The combination of a neuromorphic architecture and photonic computing may open up a new era for computational systems owing to the possibility of attaining high bandwidths and the low‐computation‐power requirements. Here, the demonstration of photonic neuromorphic devices based on amorphous oxide semiconductors (AOSs) that mimic major synaptic functions, such as short‐term memory/long‐term memory, spike‐timing‐dependent plasticity, and neural facilitation, is reported. The synaptic functions are successfully emulated using the inherent persistent photoconductivity (PPC) characteristic of AOSs. Systematic analysis of the dynamics of photogenerated carriers for various AOSs is carried out to understand the fundamental mechanisms underlying the photoinduced carrier‐generation and relaxation behaviors, and to search for a proper channel material for photonic neuromorphic devices. It is found that the activation energy for the neutralization of ionized oxygen vacancies has a significant influence on the photocarrier‐generation and time‐variant recovery behaviors of AOSs, affecting the PPC behavior. A brain‐inspired photonic neuromorphic device is demonstrated using an amorphous indium‐gallium‐zinc‐oxide film. By utilizing the persistent photoconductivity behavior, short‐term memory/long‐term memory, spike‐timing‐dependent plasticity, and neural facilitation are emulated, which are the important synaptic functions for learning and memory. This work may open up new possibilities to realize ultrafast and massive parallel synaptic computing systems based on photonic neuromorphic devices.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201700951</identifier><identifier>PMID: 28514064</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Activation energy ; amorphous oxide semiconductors ; Amorphous semiconductors ; Brain ; Computer architecture ; Devices ; Materials science ; Neuromorphic computing ; persistent photoconductivity ; Photoconductivity ; photonic neuromorphic devices ; Photonics ; Semiconductors ; Short term ; synaptic devices ; Vacancies</subject><ispartof>Advanced materials (Weinheim), 2017-07, Vol.29 (28), p.n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3731-9c2185a94b666a31fad9f7b567bad49c8bf887c5ea1e5a93e0c300b2d8ce5ec3</citedby><cites>FETCH-LOGICAL-c3731-9c2185a94b666a31fad9f7b567bad49c8bf887c5ea1e5a93e0c300b2d8ce5ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.201700951$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.201700951$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28514064$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Minkyung</creatorcontrib><creatorcontrib>Lee, Woobin</creatorcontrib><creatorcontrib>Choi, Seungbeom</creatorcontrib><creatorcontrib>Jo, Jeong‐Wan</creatorcontrib><creatorcontrib>Kim, Jaekyun</creatorcontrib><creatorcontrib>Park, Sung Kyu</creatorcontrib><creatorcontrib>Kim, Yong‐Hoon</creatorcontrib><title>Brain‐Inspired Photonic Neuromorphic Devices using Photodynamic Amorphous Oxide Semiconductors and their Persistent Photoconductivity</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>The combination of a neuromorphic architecture and photonic computing may open up a new era for computational systems owing to the possibility of attaining high bandwidths and the low‐computation‐power requirements. Here, the demonstration of photonic neuromorphic devices based on amorphous oxide semiconductors (AOSs) that mimic major synaptic functions, such as short‐term memory/long‐term memory, spike‐timing‐dependent plasticity, and neural facilitation, is reported. The synaptic functions are successfully emulated using the inherent persistent photoconductivity (PPC) characteristic of AOSs. Systematic analysis of the dynamics of photogenerated carriers for various AOSs is carried out to understand the fundamental mechanisms underlying the photoinduced carrier‐generation and relaxation behaviors, and to search for a proper channel material for photonic neuromorphic devices. It is found that the activation energy for the neutralization of ionized oxygen vacancies has a significant influence on the photocarrier‐generation and time‐variant recovery behaviors of AOSs, affecting the PPC behavior. A brain‐inspired photonic neuromorphic device is demonstrated using an amorphous indium‐gallium‐zinc‐oxide film. By utilizing the persistent photoconductivity behavior, short‐term memory/long‐term memory, spike‐timing‐dependent plasticity, and neural facilitation are emulated, which are the important synaptic functions for learning and memory. This work may open up new possibilities to realize ultrafast and massive parallel synaptic computing systems based on photonic neuromorphic devices.</description><subject>Activation energy</subject><subject>amorphous oxide semiconductors</subject><subject>Amorphous semiconductors</subject><subject>Brain</subject><subject>Computer architecture</subject><subject>Devices</subject><subject>Materials science</subject><subject>Neuromorphic computing</subject><subject>persistent photoconductivity</subject><subject>Photoconductivity</subject><subject>photonic neuromorphic devices</subject><subject>Photonics</subject><subject>Semiconductors</subject><subject>Short term</subject><subject>synaptic devices</subject><subject>Vacancies</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqF0UFPHCEYBmDSaHSrvfZoJvHiZVZgZhg4bldbTbSa1Dth4BsXswNbmFH31luv_Y39JUVn1aQXTwR4eAO8CH0meEowpsfKdGpKMakxFhX5gCakoiQv02QLTbAoqlywku-ijzHe4WQYZjtol_KKlJiVE_T7S1DW_f3159zFlQ1gsuuF772zOvsOQ_CdD6tFmpzAvdUQsyFadzsas3aqS1uzZ-OHmF09WgPZD0ir3plB9z7ETDmT9QuwIbuGEG3swfVjwAbZe9uv99F2q5YRPm3GPXTz9fRmfpZfXH07n88ucl3UBcmFpoRXSpQNY0wVpFVGtHVTsbpRphSaNy3nta5AEUisAKwLjBtquIYKdLGHjsbYVfA_B4i97GzUsFwqB-kFknAhapH-kyd6-B-980Nw6XKSJMEopYIlNR2VDj7GAK1cBdupsJYEy6eG5FND8rWhdOBgEzs0HZhX_lJJAmIED3YJ63fi5OzkcvYW_g-omaGv</recordid><startdate>201707</startdate><enddate>201707</enddate><creator>Lee, Minkyung</creator><creator>Lee, Woobin</creator><creator>Choi, Seungbeom</creator><creator>Jo, Jeong‐Wan</creator><creator>Kim, Jaekyun</creator><creator>Park, Sung Kyu</creator><creator>Kim, Yong‐Hoon</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope></search><sort><creationdate>201707</creationdate><title>Brain‐Inspired Photonic Neuromorphic Devices using Photodynamic Amorphous Oxide Semiconductors and their Persistent Photoconductivity</title><author>Lee, Minkyung ; Lee, Woobin ; Choi, Seungbeom ; Jo, Jeong‐Wan ; Kim, Jaekyun ; Park, Sung Kyu ; Kim, Yong‐Hoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3731-9c2185a94b666a31fad9f7b567bad49c8bf887c5ea1e5a93e0c300b2d8ce5ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Activation energy</topic><topic>amorphous oxide semiconductors</topic><topic>Amorphous semiconductors</topic><topic>Brain</topic><topic>Computer architecture</topic><topic>Devices</topic><topic>Materials science</topic><topic>Neuromorphic computing</topic><topic>persistent photoconductivity</topic><topic>Photoconductivity</topic><topic>photonic neuromorphic devices</topic><topic>Photonics</topic><topic>Semiconductors</topic><topic>Short term</topic><topic>synaptic devices</topic><topic>Vacancies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Minkyung</creatorcontrib><creatorcontrib>Lee, Woobin</creatorcontrib><creatorcontrib>Choi, Seungbeom</creatorcontrib><creatorcontrib>Jo, Jeong‐Wan</creatorcontrib><creatorcontrib>Kim, Jaekyun</creatorcontrib><creatorcontrib>Park, Sung Kyu</creatorcontrib><creatorcontrib>Kim, Yong‐Hoon</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Minkyung</au><au>Lee, Woobin</au><au>Choi, Seungbeom</au><au>Jo, Jeong‐Wan</au><au>Kim, Jaekyun</au><au>Park, Sung Kyu</au><au>Kim, Yong‐Hoon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Brain‐Inspired Photonic Neuromorphic Devices using Photodynamic Amorphous Oxide Semiconductors and their Persistent Photoconductivity</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2017-07</date><risdate>2017</risdate><volume>29</volume><issue>28</issue><epage>n/a</epage><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>The combination of a neuromorphic architecture and photonic computing may open up a new era for computational systems owing to the possibility of attaining high bandwidths and the low‐computation‐power requirements. Here, the demonstration of photonic neuromorphic devices based on amorphous oxide semiconductors (AOSs) that mimic major synaptic functions, such as short‐term memory/long‐term memory, spike‐timing‐dependent plasticity, and neural facilitation, is reported. The synaptic functions are successfully emulated using the inherent persistent photoconductivity (PPC) characteristic of AOSs. Systematic analysis of the dynamics of photogenerated carriers for various AOSs is carried out to understand the fundamental mechanisms underlying the photoinduced carrier‐generation and relaxation behaviors, and to search for a proper channel material for photonic neuromorphic devices. It is found that the activation energy for the neutralization of ionized oxygen vacancies has a significant influence on the photocarrier‐generation and time‐variant recovery behaviors of AOSs, affecting the PPC behavior. A brain‐inspired photonic neuromorphic device is demonstrated using an amorphous indium‐gallium‐zinc‐oxide film. By utilizing the persistent photoconductivity behavior, short‐term memory/long‐term memory, spike‐timing‐dependent plasticity, and neural facilitation are emulated, which are the important synaptic functions for learning and memory. This work may open up new possibilities to realize ultrafast and massive parallel synaptic computing systems based on photonic neuromorphic devices.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28514064</pmid><doi>10.1002/adma.201700951</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2017-07, Vol.29 (28), p.n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_1899792018
source Wiley Online Library Journals Frontfile Complete
subjects Activation energy
amorphous oxide semiconductors
Amorphous semiconductors
Brain
Computer architecture
Devices
Materials science
Neuromorphic computing
persistent photoconductivity
Photoconductivity
photonic neuromorphic devices
Photonics
Semiconductors
Short term
synaptic devices
Vacancies
title Brain‐Inspired Photonic Neuromorphic Devices using Photodynamic Amorphous Oxide Semiconductors and their Persistent Photoconductivity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T17%3A35%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Brain%E2%80%90Inspired%20Photonic%20Neuromorphic%20Devices%20using%20Photodynamic%20Amorphous%20Oxide%20Semiconductors%20and%20their%20Persistent%20Photoconductivity&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Lee,%20Minkyung&rft.date=2017-07&rft.volume=29&rft.issue=28&rft.epage=n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201700951&rft_dat=%3Cproquest_cross%3E1899792018%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1920622296&rft_id=info:pmid/28514064&rfr_iscdi=true