Estimation of 3D Ground Reaction Force Using Nanocomposite Piezo-Responsive Foam Sensors During Walking

This paper describes a method for the estimation of the 3D ground reaction force (GRF) during human walking using novel nanocomposite piezo-responsive foam (NCPF) sensors. Nine subjects (5 male, 4 female) walked on a force-instrumented treadmill at 1.34 m/s for 120 s each while wearing a shoe that w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of biomedical engineering 2017-09, Vol.45 (9), p.2122-2134
Hauptverfasser: Rosquist, Parker G., Collins, Gavin, Merrell, A. Jake, Tuttle, Noelle J., Tracy, James B., Bird, Evan T., Seeley, Matthew K., Fullwood, David T., Christensen, William F., Bowden, Anton E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2134
container_issue 9
container_start_page 2122
container_title Annals of biomedical engineering
container_volume 45
creator Rosquist, Parker G.
Collins, Gavin
Merrell, A. Jake
Tuttle, Noelle J.
Tracy, James B.
Bird, Evan T.
Seeley, Matthew K.
Fullwood, David T.
Christensen, William F.
Bowden, Anton E.
description This paper describes a method for the estimation of the 3D ground reaction force (GRF) during human walking using novel nanocomposite piezo-responsive foam (NCPF) sensors. Nine subjects (5 male, 4 female) walked on a force-instrumented treadmill at 1.34 m/s for 120 s each while wearing a shoe that was instrumented with four NCPF sensors. GRF data, measured via the treadmill, and sensor data, measured via the NCPF inserts, were used in a tenfold cross validation process to calibrate a separate model for each individual. The calibration model estimated average anterior–posterior, mediolateral and vertical GRF with mean average errors (MAE) of 6.52 N (2.14%), 4.79 N (6.34%), and 15.4 N (2.15%), respectively. Two additional models were created using the sensor data from all subjects and subject demographics. A tenfold cross validation process for this combined data set resulted in models that estimated average anterior–posterior, mediolateral and vertical GRF with less than 8.16 N (2.41%), 6.63 N (7.37%), and 19.4 N (2.31%) errors, respectively. Intra-subject estimates based on the model had a higher accuracy than inter-subject estimates, likely due to the relatively small subject cohort used in creating the model. The novel NCPF sensors demonstrate the ability to accurately estimate 3D GRF during human movement outside of the traditional biomechanics laboratory setting.
doi_str_mv 10.1007/s10439-017-1852-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1899791322</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1899791322</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-fb21ea8c612c8ede40b105bb79f3ad867face425bf810ecd2a92ca25eb4e2a0d3</originalsourceid><addsrcrecordid>eNp1kV9LHTEQxUNR6q31A_SlBHzxJZpJ9k_yWLxqC9IWW_ExZLOzsvbuZpvZLeind7dXSxF8Ghh-58xwDmMfQB6DlOUJgcy0FRJKASZXQr1hK8hLLWxhih22ktJKUdgi22PviO6kBDA6f8v2lMlBlRJW7PaMxrbzYxt7Hhuu1_wixamv-RX68Hd7HlNAfk1tf8u_-j6G2A2R2hH59xYforhCGmJP7R-cUd_xH9hTTMTXU1okN37za57v2W7jN4QHT3OfXZ-f_Tz9LC6_XXw5_XQpQmaKUTSVAvQmFKCCwRozWYHMq6q0jfa1KcrGB8xUXjUGJIZaeauCVzlWGSova73Pjra-Q4q_J6TRdS0F3Gx8j3EiB8ba0oJWakYPX6B3cUr9_J0DqwG0LfOFgi0VUiRK2LghzYGlewfSLS24bQtubsEtLbhF8_HJeao6rP8pnmOfAbUFaFhCwvTf6VddHwFM9pMG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1931139752</pqid></control><display><type>article</type><title>Estimation of 3D Ground Reaction Force Using Nanocomposite Piezo-Responsive Foam Sensors During Walking</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Rosquist, Parker G. ; Collins, Gavin ; Merrell, A. Jake ; Tuttle, Noelle J. ; Tracy, James B. ; Bird, Evan T. ; Seeley, Matthew K. ; Fullwood, David T. ; Christensen, William F. ; Bowden, Anton E.</creator><creatorcontrib>Rosquist, Parker G. ; Collins, Gavin ; Merrell, A. Jake ; Tuttle, Noelle J. ; Tracy, James B. ; Bird, Evan T. ; Seeley, Matthew K. ; Fullwood, David T. ; Christensen, William F. ; Bowden, Anton E.</creatorcontrib><description>This paper describes a method for the estimation of the 3D ground reaction force (GRF) during human walking using novel nanocomposite piezo-responsive foam (NCPF) sensors. Nine subjects (5 male, 4 female) walked on a force-instrumented treadmill at 1.34 m/s for 120 s each while wearing a shoe that was instrumented with four NCPF sensors. GRF data, measured via the treadmill, and sensor data, measured via the NCPF inserts, were used in a tenfold cross validation process to calibrate a separate model for each individual. The calibration model estimated average anterior–posterior, mediolateral and vertical GRF with mean average errors (MAE) of 6.52 N (2.14%), 4.79 N (6.34%), and 15.4 N (2.15%), respectively. Two additional models were created using the sensor data from all subjects and subject demographics. A tenfold cross validation process for this combined data set resulted in models that estimated average anterior–posterior, mediolateral and vertical GRF with less than 8.16 N (2.41%), 6.63 N (7.37%), and 19.4 N (2.31%) errors, respectively. Intra-subject estimates based on the model had a higher accuracy than inter-subject estimates, likely due to the relatively small subject cohort used in creating the model. The novel NCPF sensors demonstrate the ability to accurately estimate 3D GRF during human movement outside of the traditional biomechanics laboratory setting.</description><identifier>ISSN: 0090-6964</identifier><identifier>EISSN: 1573-9686</identifier><identifier>DOI: 10.1007/s10439-017-1852-2</identifier><identifier>PMID: 28512701</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adult ; Biochemistry ; Biological and Medical Physics ; Biomechanics ; Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Biomedicine ; Biophysics ; Classical Mechanics ; Demographics ; Demography ; Female ; Fitness equipment ; Gait - physiology ; Human motion ; Humans ; Inserts ; Male ; Models, Biological ; Nanocomposites ; Sensors ; Three dimensional motion ; Walking ; Walking - physiology</subject><ispartof>Annals of biomedical engineering, 2017-09, Vol.45 (9), p.2122-2134</ispartof><rights>Biomedical Engineering Society 2017</rights><rights>Annals of Biomedical Engineering is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-fb21ea8c612c8ede40b105bb79f3ad867face425bf810ecd2a92ca25eb4e2a0d3</citedby><cites>FETCH-LOGICAL-c486t-fb21ea8c612c8ede40b105bb79f3ad867face425bf810ecd2a92ca25eb4e2a0d3</cites><orcidid>0000-0003-3124-7551</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10439-017-1852-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10439-017-1852-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27928,27929,41492,42561,51323</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28512701$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rosquist, Parker G.</creatorcontrib><creatorcontrib>Collins, Gavin</creatorcontrib><creatorcontrib>Merrell, A. Jake</creatorcontrib><creatorcontrib>Tuttle, Noelle J.</creatorcontrib><creatorcontrib>Tracy, James B.</creatorcontrib><creatorcontrib>Bird, Evan T.</creatorcontrib><creatorcontrib>Seeley, Matthew K.</creatorcontrib><creatorcontrib>Fullwood, David T.</creatorcontrib><creatorcontrib>Christensen, William F.</creatorcontrib><creatorcontrib>Bowden, Anton E.</creatorcontrib><title>Estimation of 3D Ground Reaction Force Using Nanocomposite Piezo-Responsive Foam Sensors During Walking</title><title>Annals of biomedical engineering</title><addtitle>Ann Biomed Eng</addtitle><addtitle>Ann Biomed Eng</addtitle><description>This paper describes a method for the estimation of the 3D ground reaction force (GRF) during human walking using novel nanocomposite piezo-responsive foam (NCPF) sensors. Nine subjects (5 male, 4 female) walked on a force-instrumented treadmill at 1.34 m/s for 120 s each while wearing a shoe that was instrumented with four NCPF sensors. GRF data, measured via the treadmill, and sensor data, measured via the NCPF inserts, were used in a tenfold cross validation process to calibrate a separate model for each individual. The calibration model estimated average anterior–posterior, mediolateral and vertical GRF with mean average errors (MAE) of 6.52 N (2.14%), 4.79 N (6.34%), and 15.4 N (2.15%), respectively. Two additional models were created using the sensor data from all subjects and subject demographics. A tenfold cross validation process for this combined data set resulted in models that estimated average anterior–posterior, mediolateral and vertical GRF with less than 8.16 N (2.41%), 6.63 N (7.37%), and 19.4 N (2.31%) errors, respectively. Intra-subject estimates based on the model had a higher accuracy than inter-subject estimates, likely due to the relatively small subject cohort used in creating the model. The novel NCPF sensors demonstrate the ability to accurately estimate 3D GRF during human movement outside of the traditional biomechanics laboratory setting.</description><subject>Adult</subject><subject>Biochemistry</subject><subject>Biological and Medical Physics</subject><subject>Biomechanics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Biophysics</subject><subject>Classical Mechanics</subject><subject>Demographics</subject><subject>Demography</subject><subject>Female</subject><subject>Fitness equipment</subject><subject>Gait - physiology</subject><subject>Human motion</subject><subject>Humans</subject><subject>Inserts</subject><subject>Male</subject><subject>Models, Biological</subject><subject>Nanocomposites</subject><subject>Sensors</subject><subject>Three dimensional motion</subject><subject>Walking</subject><subject>Walking - physiology</subject><issn>0090-6964</issn><issn>1573-9686</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kV9LHTEQxUNR6q31A_SlBHzxJZpJ9k_yWLxqC9IWW_ExZLOzsvbuZpvZLeind7dXSxF8Ghh-58xwDmMfQB6DlOUJgcy0FRJKASZXQr1hK8hLLWxhih22ktJKUdgi22PviO6kBDA6f8v2lMlBlRJW7PaMxrbzYxt7Hhuu1_wixamv-RX68Hd7HlNAfk1tf8u_-j6G2A2R2hH59xYforhCGmJP7R-cUd_xH9hTTMTXU1okN37za57v2W7jN4QHT3OfXZ-f_Tz9LC6_XXw5_XQpQmaKUTSVAvQmFKCCwRozWYHMq6q0jfa1KcrGB8xUXjUGJIZaeauCVzlWGSova73Pjra-Q4q_J6TRdS0F3Gx8j3EiB8ba0oJWakYPX6B3cUr9_J0DqwG0LfOFgi0VUiRK2LghzYGlewfSLS24bQtubsEtLbhF8_HJeao6rP8pnmOfAbUFaFhCwvTf6VddHwFM9pMG</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Rosquist, Parker G.</creator><creator>Collins, Gavin</creator><creator>Merrell, A. Jake</creator><creator>Tuttle, Noelle J.</creator><creator>Tracy, James B.</creator><creator>Bird, Evan T.</creator><creator>Seeley, Matthew K.</creator><creator>Fullwood, David T.</creator><creator>Christensen, William F.</creator><creator>Bowden, Anton E.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3124-7551</orcidid></search><sort><creationdate>20170901</creationdate><title>Estimation of 3D Ground Reaction Force Using Nanocomposite Piezo-Responsive Foam Sensors During Walking</title><author>Rosquist, Parker G. ; Collins, Gavin ; Merrell, A. Jake ; Tuttle, Noelle J. ; Tracy, James B. ; Bird, Evan T. ; Seeley, Matthew K. ; Fullwood, David T. ; Christensen, William F. ; Bowden, Anton E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-fb21ea8c612c8ede40b105bb79f3ad867face425bf810ecd2a92ca25eb4e2a0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adult</topic><topic>Biochemistry</topic><topic>Biological and Medical Physics</topic><topic>Biomechanics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Biophysics</topic><topic>Classical Mechanics</topic><topic>Demographics</topic><topic>Demography</topic><topic>Female</topic><topic>Fitness equipment</topic><topic>Gait - physiology</topic><topic>Human motion</topic><topic>Humans</topic><topic>Inserts</topic><topic>Male</topic><topic>Models, Biological</topic><topic>Nanocomposites</topic><topic>Sensors</topic><topic>Three dimensional motion</topic><topic>Walking</topic><topic>Walking - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rosquist, Parker G.</creatorcontrib><creatorcontrib>Collins, Gavin</creatorcontrib><creatorcontrib>Merrell, A. Jake</creatorcontrib><creatorcontrib>Tuttle, Noelle J.</creatorcontrib><creatorcontrib>Tracy, James B.</creatorcontrib><creatorcontrib>Bird, Evan T.</creatorcontrib><creatorcontrib>Seeley, Matthew K.</creatorcontrib><creatorcontrib>Fullwood, David T.</creatorcontrib><creatorcontrib>Christensen, William F.</creatorcontrib><creatorcontrib>Bowden, Anton E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Annals of biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rosquist, Parker G.</au><au>Collins, Gavin</au><au>Merrell, A. Jake</au><au>Tuttle, Noelle J.</au><au>Tracy, James B.</au><au>Bird, Evan T.</au><au>Seeley, Matthew K.</au><au>Fullwood, David T.</au><au>Christensen, William F.</au><au>Bowden, Anton E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of 3D Ground Reaction Force Using Nanocomposite Piezo-Responsive Foam Sensors During Walking</atitle><jtitle>Annals of biomedical engineering</jtitle><stitle>Ann Biomed Eng</stitle><addtitle>Ann Biomed Eng</addtitle><date>2017-09-01</date><risdate>2017</risdate><volume>45</volume><issue>9</issue><spage>2122</spage><epage>2134</epage><pages>2122-2134</pages><issn>0090-6964</issn><eissn>1573-9686</eissn><abstract>This paper describes a method for the estimation of the 3D ground reaction force (GRF) during human walking using novel nanocomposite piezo-responsive foam (NCPF) sensors. Nine subjects (5 male, 4 female) walked on a force-instrumented treadmill at 1.34 m/s for 120 s each while wearing a shoe that was instrumented with four NCPF sensors. GRF data, measured via the treadmill, and sensor data, measured via the NCPF inserts, were used in a tenfold cross validation process to calibrate a separate model for each individual. The calibration model estimated average anterior–posterior, mediolateral and vertical GRF with mean average errors (MAE) of 6.52 N (2.14%), 4.79 N (6.34%), and 15.4 N (2.15%), respectively. Two additional models were created using the sensor data from all subjects and subject demographics. A tenfold cross validation process for this combined data set resulted in models that estimated average anterior–posterior, mediolateral and vertical GRF with less than 8.16 N (2.41%), 6.63 N (7.37%), and 19.4 N (2.31%) errors, respectively. Intra-subject estimates based on the model had a higher accuracy than inter-subject estimates, likely due to the relatively small subject cohort used in creating the model. The novel NCPF sensors demonstrate the ability to accurately estimate 3D GRF during human movement outside of the traditional biomechanics laboratory setting.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>28512701</pmid><doi>10.1007/s10439-017-1852-2</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3124-7551</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0090-6964
ispartof Annals of biomedical engineering, 2017-09, Vol.45 (9), p.2122-2134
issn 0090-6964
1573-9686
language eng
recordid cdi_proquest_miscellaneous_1899791322
source MEDLINE; SpringerNature Journals
subjects Adult
Biochemistry
Biological and Medical Physics
Biomechanics
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Biophysics
Classical Mechanics
Demographics
Demography
Female
Fitness equipment
Gait - physiology
Human motion
Humans
Inserts
Male
Models, Biological
Nanocomposites
Sensors
Three dimensional motion
Walking
Walking - physiology
title Estimation of 3D Ground Reaction Force Using Nanocomposite Piezo-Responsive Foam Sensors During Walking
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T13%3A39%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%203D%20Ground%20Reaction%20Force%20Using%20Nanocomposite%20Piezo-Responsive%20Foam%20Sensors%20During%20Walking&rft.jtitle=Annals%20of%20biomedical%20engineering&rft.au=Rosquist,%20Parker%20G.&rft.date=2017-09-01&rft.volume=45&rft.issue=9&rft.spage=2122&rft.epage=2134&rft.pages=2122-2134&rft.issn=0090-6964&rft.eissn=1573-9686&rft_id=info:doi/10.1007/s10439-017-1852-2&rft_dat=%3Cproquest_cross%3E1899791322%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1931139752&rft_id=info:pmid/28512701&rfr_iscdi=true