Robust Wireless Power Transmission to mm-Sized Free-Floating Distributed Implants

This paper presents an inductive link for wireless power transmission (WPT) to mm-sized free-floating implants (FFIs) distributed in a large three-dimensional space in the neural tissue that is insensitive to the exact location of the receiver (Rx). The proposed structure utilizes a high-Q resonator...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on biomedical circuits and systems 2017-06, Vol.11 (3), p.692-702
Hauptverfasser: Mirbozorgi, S. Abdollah, Yeon, Pyungwoo, Ghovanloo, Maysam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 702
container_issue 3
container_start_page 692
container_title IEEE transactions on biomedical circuits and systems
container_volume 11
creator Mirbozorgi, S. Abdollah
Yeon, Pyungwoo
Ghovanloo, Maysam
description This paper presents an inductive link for wireless power transmission (WPT) to mm-sized free-floating implants (FFIs) distributed in a large three-dimensional space in the neural tissue that is insensitive to the exact location of the receiver (Rx). The proposed structure utilizes a high-Q resonator on the target wirelessly powered plane that encompasses randomly positioned multiple FFIs, all powered by a large external transmitter (Tx). Based on resonant WPT fundamentals, we have devised a detailed method for optimization of the FFIs and explored design strategies and safety concerns, such as coil segmentation and specific absorption rate limits using realistic finite element simulation models in HFSS including head tissue layers, respectively. We have built several FFI prototypes to conduct accurate measurements and to characterize the performance of the proposed WPT method. Measurement results on 1-mm receivers operating at 60 MHz show power transfer efficiency and power delivered to the load at 2.4% and 1.3 mW, respectively, within 14-18 mm of Tx-Rx separation and 7 cm 2 of brain surface.
doi_str_mv 10.1109/TBCAS.2017.2663358
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1899414928</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7926319</ieee_id><sourcerecordid>1899414928</sourcerecordid><originalsourceid>FETCH-LOGICAL-c461t-732d6a6acc3e19e372c9ec2cf61f8310debcfaf5cb7812d2431dd16266f3eef83</originalsourceid><addsrcrecordid>eNpdkU1P3DAQhq2qqFDaP0ClKhKXXrL1jB0nPsLCtkhI_WArjlbiTCqjJF7sRFX59XjZhQOnGWmeGb1-zNgJ8AUA11_X58uzmwVyKBeolBBF9YYdgZY811rzt9teYC4LWRyy9zHecV4o1PiOHWJVcKllecR-_fbNHKfs1gXqKcbsp_9HIVuHeoyDi9H5MZt8Ngz5jXugNlsFonzV-3py49_swsUpuGae0uRq2PT1OMUP7KCr-0gf9_WY_Vldrpff8-sf366WZ9e5lQqmvBTYqlrV1goCTaJEq8mi7RR0lQDeUmO7uitsU1aALUoBbQsqPbQTRAk5Zl92dzfB388UJ5PyWupTCPJzNFBpLUFq3KKnr9A7P4cxpTOgOWJZcMBE4Y6ywccYqDOb4IY6_DfAzVa4eRJutsLNXnha-rw_PTcDtS8rz4YT8GkHOCJ6GZcalUjf8wh3tYTa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1902275012</pqid></control><display><type>article</type><title>Robust Wireless Power Transmission to mm-Sized Free-Floating Distributed Implants</title><source>IEEE Electronic Library (IEL)</source><creator>Mirbozorgi, S. Abdollah ; Yeon, Pyungwoo ; Ghovanloo, Maysam</creator><creatorcontrib>Mirbozorgi, S. Abdollah ; Yeon, Pyungwoo ; Ghovanloo, Maysam</creatorcontrib><description>This paper presents an inductive link for wireless power transmission (WPT) to mm-sized free-floating implants (FFIs) distributed in a large three-dimensional space in the neural tissue that is insensitive to the exact location of the receiver (Rx). The proposed structure utilizes a high-Q resonator on the target wirelessly powered plane that encompasses randomly positioned multiple FFIs, all powered by a large external transmitter (Tx). Based on resonant WPT fundamentals, we have devised a detailed method for optimization of the FFIs and explored design strategies and safety concerns, such as coil segmentation and specific absorption rate limits using realistic finite element simulation models in HFSS including head tissue layers, respectively. We have built several FFI prototypes to conduct accurate measurements and to characterize the performance of the proposed WPT method. Measurement results on 1-mm receivers operating at 60 MHz show power transfer efficiency and power delivered to the load at 2.4% and 1.3 mW, respectively, within 14-18 mm of Tx-Rx separation and 7 cm 2 of brain surface.</description><identifier>ISSN: 1932-4545</identifier><identifier>EISSN: 1940-9990</identifier><identifier>DOI: 10.1109/TBCAS.2017.2663358</identifier><identifier>PMID: 28504947</identifier><identifier>CODEN: ITBCCW</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Brain ; Coils ; Computer simulation ; Design optimization ; Electric Power Supplies ; Equipment Design ; Finite Element Analysis ; Finite element method ; Floating structures ; Free-floating distributed implants ; Humans ; Implants ; inductive link ; Magnetic heads ; magnetic resonance ; Mathematical models ; Optical resonators ; Optimization ; Position (location) ; Power efficiency ; Prostheses and Implants ; Prototypes ; Receivers ; Robustness ; Safety engineering ; Segmentation ; Separation ; Simulation ; Wireless power transmission ; Wireless Technology</subject><ispartof>IEEE transactions on biomedical circuits and systems, 2017-06, Vol.11 (3), p.692-702</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c461t-732d6a6acc3e19e372c9ec2cf61f8310debcfaf5cb7812d2431dd16266f3eef83</citedby><cites>FETCH-LOGICAL-c461t-732d6a6acc3e19e372c9ec2cf61f8310debcfaf5cb7812d2431dd16266f3eef83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7926319$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7926319$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28504947$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mirbozorgi, S. Abdollah</creatorcontrib><creatorcontrib>Yeon, Pyungwoo</creatorcontrib><creatorcontrib>Ghovanloo, Maysam</creatorcontrib><title>Robust Wireless Power Transmission to mm-Sized Free-Floating Distributed Implants</title><title>IEEE transactions on biomedical circuits and systems</title><addtitle>TBCAS</addtitle><addtitle>IEEE Trans Biomed Circuits Syst</addtitle><description>This paper presents an inductive link for wireless power transmission (WPT) to mm-sized free-floating implants (FFIs) distributed in a large three-dimensional space in the neural tissue that is insensitive to the exact location of the receiver (Rx). The proposed structure utilizes a high-Q resonator on the target wirelessly powered plane that encompasses randomly positioned multiple FFIs, all powered by a large external transmitter (Tx). Based on resonant WPT fundamentals, we have devised a detailed method for optimization of the FFIs and explored design strategies and safety concerns, such as coil segmentation and specific absorption rate limits using realistic finite element simulation models in HFSS including head tissue layers, respectively. We have built several FFI prototypes to conduct accurate measurements and to characterize the performance of the proposed WPT method. Measurement results on 1-mm receivers operating at 60 MHz show power transfer efficiency and power delivered to the load at 2.4% and 1.3 mW, respectively, within 14-18 mm of Tx-Rx separation and 7 cm 2 of brain surface.</description><subject>Brain</subject><subject>Coils</subject><subject>Computer simulation</subject><subject>Design optimization</subject><subject>Electric Power Supplies</subject><subject>Equipment Design</subject><subject>Finite Element Analysis</subject><subject>Finite element method</subject><subject>Floating structures</subject><subject>Free-floating distributed implants</subject><subject>Humans</subject><subject>Implants</subject><subject>inductive link</subject><subject>Magnetic heads</subject><subject>magnetic resonance</subject><subject>Mathematical models</subject><subject>Optical resonators</subject><subject>Optimization</subject><subject>Position (location)</subject><subject>Power efficiency</subject><subject>Prostheses and Implants</subject><subject>Prototypes</subject><subject>Receivers</subject><subject>Robustness</subject><subject>Safety engineering</subject><subject>Segmentation</subject><subject>Separation</subject><subject>Simulation</subject><subject>Wireless power transmission</subject><subject>Wireless Technology</subject><issn>1932-4545</issn><issn>1940-9990</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkU1P3DAQhq2qqFDaP0ClKhKXXrL1jB0nPsLCtkhI_WArjlbiTCqjJF7sRFX59XjZhQOnGWmeGb1-zNgJ8AUA11_X58uzmwVyKBeolBBF9YYdgZY811rzt9teYC4LWRyy9zHecV4o1PiOHWJVcKllecR-_fbNHKfs1gXqKcbsp_9HIVuHeoyDi9H5MZt8Ngz5jXugNlsFonzV-3py49_swsUpuGae0uRq2PT1OMUP7KCr-0gf9_WY_Vldrpff8-sf366WZ9e5lQqmvBTYqlrV1goCTaJEq8mi7RR0lQDeUmO7uitsU1aALUoBbQsqPbQTRAk5Zl92dzfB388UJ5PyWupTCPJzNFBpLUFq3KKnr9A7P4cxpTOgOWJZcMBE4Y6ywccYqDOb4IY6_DfAzVa4eRJutsLNXnha-rw_PTcDtS8rz4YT8GkHOCJ6GZcalUjf8wh3tYTa</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Mirbozorgi, S. Abdollah</creator><creator>Yeon, Pyungwoo</creator><creator>Ghovanloo, Maysam</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20170601</creationdate><title>Robust Wireless Power Transmission to mm-Sized Free-Floating Distributed Implants</title><author>Mirbozorgi, S. Abdollah ; Yeon, Pyungwoo ; Ghovanloo, Maysam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c461t-732d6a6acc3e19e372c9ec2cf61f8310debcfaf5cb7812d2431dd16266f3eef83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Brain</topic><topic>Coils</topic><topic>Computer simulation</topic><topic>Design optimization</topic><topic>Electric Power Supplies</topic><topic>Equipment Design</topic><topic>Finite Element Analysis</topic><topic>Finite element method</topic><topic>Floating structures</topic><topic>Free-floating distributed implants</topic><topic>Humans</topic><topic>Implants</topic><topic>inductive link</topic><topic>Magnetic heads</topic><topic>magnetic resonance</topic><topic>Mathematical models</topic><topic>Optical resonators</topic><topic>Optimization</topic><topic>Position (location)</topic><topic>Power efficiency</topic><topic>Prostheses and Implants</topic><topic>Prototypes</topic><topic>Receivers</topic><topic>Robustness</topic><topic>Safety engineering</topic><topic>Segmentation</topic><topic>Separation</topic><topic>Simulation</topic><topic>Wireless power transmission</topic><topic>Wireless Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mirbozorgi, S. Abdollah</creatorcontrib><creatorcontrib>Yeon, Pyungwoo</creatorcontrib><creatorcontrib>Ghovanloo, Maysam</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on biomedical circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mirbozorgi, S. Abdollah</au><au>Yeon, Pyungwoo</au><au>Ghovanloo, Maysam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Wireless Power Transmission to mm-Sized Free-Floating Distributed Implants</atitle><jtitle>IEEE transactions on biomedical circuits and systems</jtitle><stitle>TBCAS</stitle><addtitle>IEEE Trans Biomed Circuits Syst</addtitle><date>2017-06-01</date><risdate>2017</risdate><volume>11</volume><issue>3</issue><spage>692</spage><epage>702</epage><pages>692-702</pages><issn>1932-4545</issn><eissn>1940-9990</eissn><coden>ITBCCW</coden><abstract>This paper presents an inductive link for wireless power transmission (WPT) to mm-sized free-floating implants (FFIs) distributed in a large three-dimensional space in the neural tissue that is insensitive to the exact location of the receiver (Rx). The proposed structure utilizes a high-Q resonator on the target wirelessly powered plane that encompasses randomly positioned multiple FFIs, all powered by a large external transmitter (Tx). Based on resonant WPT fundamentals, we have devised a detailed method for optimization of the FFIs and explored design strategies and safety concerns, such as coil segmentation and specific absorption rate limits using realistic finite element simulation models in HFSS including head tissue layers, respectively. We have built several FFI prototypes to conduct accurate measurements and to characterize the performance of the proposed WPT method. Measurement results on 1-mm receivers operating at 60 MHz show power transfer efficiency and power delivered to the load at 2.4% and 1.3 mW, respectively, within 14-18 mm of Tx-Rx separation and 7 cm 2 of brain surface.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>28504947</pmid><doi>10.1109/TBCAS.2017.2663358</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1932-4545
ispartof IEEE transactions on biomedical circuits and systems, 2017-06, Vol.11 (3), p.692-702
issn 1932-4545
1940-9990
language eng
recordid cdi_proquest_miscellaneous_1899414928
source IEEE Electronic Library (IEL)
subjects Brain
Coils
Computer simulation
Design optimization
Electric Power Supplies
Equipment Design
Finite Element Analysis
Finite element method
Floating structures
Free-floating distributed implants
Humans
Implants
inductive link
Magnetic heads
magnetic resonance
Mathematical models
Optical resonators
Optimization
Position (location)
Power efficiency
Prostheses and Implants
Prototypes
Receivers
Robustness
Safety engineering
Segmentation
Separation
Simulation
Wireless power transmission
Wireless Technology
title Robust Wireless Power Transmission to mm-Sized Free-Floating Distributed Implants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T00%3A31%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Wireless%20Power%20Transmission%20to%20mm-Sized%20Free-Floating%20Distributed%20Implants&rft.jtitle=IEEE%20transactions%20on%20biomedical%20circuits%20and%20systems&rft.au=Mirbozorgi,%20S.%20Abdollah&rft.date=2017-06-01&rft.volume=11&rft.issue=3&rft.spage=692&rft.epage=702&rft.pages=692-702&rft.issn=1932-4545&rft.eissn=1940-9990&rft.coden=ITBCCW&rft_id=info:doi/10.1109/TBCAS.2017.2663358&rft_dat=%3Cproquest_RIE%3E1899414928%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1902275012&rft_id=info:pmid/28504947&rft_ieee_id=7926319&rfr_iscdi=true