Robust Wireless Power Transmission to mm-Sized Free-Floating Distributed Implants
This paper presents an inductive link for wireless power transmission (WPT) to mm-sized free-floating implants (FFIs) distributed in a large three-dimensional space in the neural tissue that is insensitive to the exact location of the receiver (Rx). The proposed structure utilizes a high-Q resonator...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on biomedical circuits and systems 2017-06, Vol.11 (3), p.692-702 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 702 |
---|---|
container_issue | 3 |
container_start_page | 692 |
container_title | IEEE transactions on biomedical circuits and systems |
container_volume | 11 |
creator | Mirbozorgi, S. Abdollah Yeon, Pyungwoo Ghovanloo, Maysam |
description | This paper presents an inductive link for wireless power transmission (WPT) to mm-sized free-floating implants (FFIs) distributed in a large three-dimensional space in the neural tissue that is insensitive to the exact location of the receiver (Rx). The proposed structure utilizes a high-Q resonator on the target wirelessly powered plane that encompasses randomly positioned multiple FFIs, all powered by a large external transmitter (Tx). Based on resonant WPT fundamentals, we have devised a detailed method for optimization of the FFIs and explored design strategies and safety concerns, such as coil segmentation and specific absorption rate limits using realistic finite element simulation models in HFSS including head tissue layers, respectively. We have built several FFI prototypes to conduct accurate measurements and to characterize the performance of the proposed WPT method. Measurement results on 1-mm receivers operating at 60 MHz show power transfer efficiency and power delivered to the load at 2.4% and 1.3 mW, respectively, within 14-18 mm of Tx-Rx separation and 7 cm 2 of brain surface. |
doi_str_mv | 10.1109/TBCAS.2017.2663358 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1899414928</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7926319</ieee_id><sourcerecordid>1899414928</sourcerecordid><originalsourceid>FETCH-LOGICAL-c461t-732d6a6acc3e19e372c9ec2cf61f8310debcfaf5cb7812d2431dd16266f3eef83</originalsourceid><addsrcrecordid>eNpdkU1P3DAQhq2qqFDaP0ClKhKXXrL1jB0nPsLCtkhI_WArjlbiTCqjJF7sRFX59XjZhQOnGWmeGb1-zNgJ8AUA11_X58uzmwVyKBeolBBF9YYdgZY811rzt9teYC4LWRyy9zHecV4o1PiOHWJVcKllecR-_fbNHKfs1gXqKcbsp_9HIVuHeoyDi9H5MZt8Ngz5jXugNlsFonzV-3py49_swsUpuGae0uRq2PT1OMUP7KCr-0gf9_WY_Vldrpff8-sf366WZ9e5lQqmvBTYqlrV1goCTaJEq8mi7RR0lQDeUmO7uitsU1aALUoBbQsqPbQTRAk5Zl92dzfB388UJ5PyWupTCPJzNFBpLUFq3KKnr9A7P4cxpTOgOWJZcMBE4Y6ywccYqDOb4IY6_DfAzVa4eRJutsLNXnha-rw_PTcDtS8rz4YT8GkHOCJ6GZcalUjf8wh3tYTa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1902275012</pqid></control><display><type>article</type><title>Robust Wireless Power Transmission to mm-Sized Free-Floating Distributed Implants</title><source>IEEE Electronic Library (IEL)</source><creator>Mirbozorgi, S. Abdollah ; Yeon, Pyungwoo ; Ghovanloo, Maysam</creator><creatorcontrib>Mirbozorgi, S. Abdollah ; Yeon, Pyungwoo ; Ghovanloo, Maysam</creatorcontrib><description>This paper presents an inductive link for wireless power transmission (WPT) to mm-sized free-floating implants (FFIs) distributed in a large three-dimensional space in the neural tissue that is insensitive to the exact location of the receiver (Rx). The proposed structure utilizes a high-Q resonator on the target wirelessly powered plane that encompasses randomly positioned multiple FFIs, all powered by a large external transmitter (Tx). Based on resonant WPT fundamentals, we have devised a detailed method for optimization of the FFIs and explored design strategies and safety concerns, such as coil segmentation and specific absorption rate limits using realistic finite element simulation models in HFSS including head tissue layers, respectively. We have built several FFI prototypes to conduct accurate measurements and to characterize the performance of the proposed WPT method. Measurement results on 1-mm receivers operating at 60 MHz show power transfer efficiency and power delivered to the load at 2.4% and 1.3 mW, respectively, within 14-18 mm of Tx-Rx separation and 7 cm 2 of brain surface.</description><identifier>ISSN: 1932-4545</identifier><identifier>EISSN: 1940-9990</identifier><identifier>DOI: 10.1109/TBCAS.2017.2663358</identifier><identifier>PMID: 28504947</identifier><identifier>CODEN: ITBCCW</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Brain ; Coils ; Computer simulation ; Design optimization ; Electric Power Supplies ; Equipment Design ; Finite Element Analysis ; Finite element method ; Floating structures ; Free-floating distributed implants ; Humans ; Implants ; inductive link ; Magnetic heads ; magnetic resonance ; Mathematical models ; Optical resonators ; Optimization ; Position (location) ; Power efficiency ; Prostheses and Implants ; Prototypes ; Receivers ; Robustness ; Safety engineering ; Segmentation ; Separation ; Simulation ; Wireless power transmission ; Wireless Technology</subject><ispartof>IEEE transactions on biomedical circuits and systems, 2017-06, Vol.11 (3), p.692-702</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c461t-732d6a6acc3e19e372c9ec2cf61f8310debcfaf5cb7812d2431dd16266f3eef83</citedby><cites>FETCH-LOGICAL-c461t-732d6a6acc3e19e372c9ec2cf61f8310debcfaf5cb7812d2431dd16266f3eef83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7926319$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7926319$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28504947$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mirbozorgi, S. Abdollah</creatorcontrib><creatorcontrib>Yeon, Pyungwoo</creatorcontrib><creatorcontrib>Ghovanloo, Maysam</creatorcontrib><title>Robust Wireless Power Transmission to mm-Sized Free-Floating Distributed Implants</title><title>IEEE transactions on biomedical circuits and systems</title><addtitle>TBCAS</addtitle><addtitle>IEEE Trans Biomed Circuits Syst</addtitle><description>This paper presents an inductive link for wireless power transmission (WPT) to mm-sized free-floating implants (FFIs) distributed in a large three-dimensional space in the neural tissue that is insensitive to the exact location of the receiver (Rx). The proposed structure utilizes a high-Q resonator on the target wirelessly powered plane that encompasses randomly positioned multiple FFIs, all powered by a large external transmitter (Tx). Based on resonant WPT fundamentals, we have devised a detailed method for optimization of the FFIs and explored design strategies and safety concerns, such as coil segmentation and specific absorption rate limits using realistic finite element simulation models in HFSS including head tissue layers, respectively. We have built several FFI prototypes to conduct accurate measurements and to characterize the performance of the proposed WPT method. Measurement results on 1-mm receivers operating at 60 MHz show power transfer efficiency and power delivered to the load at 2.4% and 1.3 mW, respectively, within 14-18 mm of Tx-Rx separation and 7 cm 2 of brain surface.</description><subject>Brain</subject><subject>Coils</subject><subject>Computer simulation</subject><subject>Design optimization</subject><subject>Electric Power Supplies</subject><subject>Equipment Design</subject><subject>Finite Element Analysis</subject><subject>Finite element method</subject><subject>Floating structures</subject><subject>Free-floating distributed implants</subject><subject>Humans</subject><subject>Implants</subject><subject>inductive link</subject><subject>Magnetic heads</subject><subject>magnetic resonance</subject><subject>Mathematical models</subject><subject>Optical resonators</subject><subject>Optimization</subject><subject>Position (location)</subject><subject>Power efficiency</subject><subject>Prostheses and Implants</subject><subject>Prototypes</subject><subject>Receivers</subject><subject>Robustness</subject><subject>Safety engineering</subject><subject>Segmentation</subject><subject>Separation</subject><subject>Simulation</subject><subject>Wireless power transmission</subject><subject>Wireless Technology</subject><issn>1932-4545</issn><issn>1940-9990</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkU1P3DAQhq2qqFDaP0ClKhKXXrL1jB0nPsLCtkhI_WArjlbiTCqjJF7sRFX59XjZhQOnGWmeGb1-zNgJ8AUA11_X58uzmwVyKBeolBBF9YYdgZY811rzt9teYC4LWRyy9zHecV4o1PiOHWJVcKllecR-_fbNHKfs1gXqKcbsp_9HIVuHeoyDi9H5MZt8Ngz5jXugNlsFonzV-3py49_swsUpuGae0uRq2PT1OMUP7KCr-0gf9_WY_Vldrpff8-sf366WZ9e5lQqmvBTYqlrV1goCTaJEq8mi7RR0lQDeUmO7uitsU1aALUoBbQsqPbQTRAk5Zl92dzfB388UJ5PyWupTCPJzNFBpLUFq3KKnr9A7P4cxpTOgOWJZcMBE4Y6ywccYqDOb4IY6_DfAzVa4eRJutsLNXnha-rw_PTcDtS8rz4YT8GkHOCJ6GZcalUjf8wh3tYTa</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Mirbozorgi, S. Abdollah</creator><creator>Yeon, Pyungwoo</creator><creator>Ghovanloo, Maysam</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20170601</creationdate><title>Robust Wireless Power Transmission to mm-Sized Free-Floating Distributed Implants</title><author>Mirbozorgi, S. Abdollah ; Yeon, Pyungwoo ; Ghovanloo, Maysam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c461t-732d6a6acc3e19e372c9ec2cf61f8310debcfaf5cb7812d2431dd16266f3eef83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Brain</topic><topic>Coils</topic><topic>Computer simulation</topic><topic>Design optimization</topic><topic>Electric Power Supplies</topic><topic>Equipment Design</topic><topic>Finite Element Analysis</topic><topic>Finite element method</topic><topic>Floating structures</topic><topic>Free-floating distributed implants</topic><topic>Humans</topic><topic>Implants</topic><topic>inductive link</topic><topic>Magnetic heads</topic><topic>magnetic resonance</topic><topic>Mathematical models</topic><topic>Optical resonators</topic><topic>Optimization</topic><topic>Position (location)</topic><topic>Power efficiency</topic><topic>Prostheses and Implants</topic><topic>Prototypes</topic><topic>Receivers</topic><topic>Robustness</topic><topic>Safety engineering</topic><topic>Segmentation</topic><topic>Separation</topic><topic>Simulation</topic><topic>Wireless power transmission</topic><topic>Wireless Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mirbozorgi, S. Abdollah</creatorcontrib><creatorcontrib>Yeon, Pyungwoo</creatorcontrib><creatorcontrib>Ghovanloo, Maysam</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on biomedical circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mirbozorgi, S. Abdollah</au><au>Yeon, Pyungwoo</au><au>Ghovanloo, Maysam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Wireless Power Transmission to mm-Sized Free-Floating Distributed Implants</atitle><jtitle>IEEE transactions on biomedical circuits and systems</jtitle><stitle>TBCAS</stitle><addtitle>IEEE Trans Biomed Circuits Syst</addtitle><date>2017-06-01</date><risdate>2017</risdate><volume>11</volume><issue>3</issue><spage>692</spage><epage>702</epage><pages>692-702</pages><issn>1932-4545</issn><eissn>1940-9990</eissn><coden>ITBCCW</coden><abstract>This paper presents an inductive link for wireless power transmission (WPT) to mm-sized free-floating implants (FFIs) distributed in a large three-dimensional space in the neural tissue that is insensitive to the exact location of the receiver (Rx). The proposed structure utilizes a high-Q resonator on the target wirelessly powered plane that encompasses randomly positioned multiple FFIs, all powered by a large external transmitter (Tx). Based on resonant WPT fundamentals, we have devised a detailed method for optimization of the FFIs and explored design strategies and safety concerns, such as coil segmentation and specific absorption rate limits using realistic finite element simulation models in HFSS including head tissue layers, respectively. We have built several FFI prototypes to conduct accurate measurements and to characterize the performance of the proposed WPT method. Measurement results on 1-mm receivers operating at 60 MHz show power transfer efficiency and power delivered to the load at 2.4% and 1.3 mW, respectively, within 14-18 mm of Tx-Rx separation and 7 cm 2 of brain surface.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>28504947</pmid><doi>10.1109/TBCAS.2017.2663358</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1932-4545 |
ispartof | IEEE transactions on biomedical circuits and systems, 2017-06, Vol.11 (3), p.692-702 |
issn | 1932-4545 1940-9990 |
language | eng |
recordid | cdi_proquest_miscellaneous_1899414928 |
source | IEEE Electronic Library (IEL) |
subjects | Brain Coils Computer simulation Design optimization Electric Power Supplies Equipment Design Finite Element Analysis Finite element method Floating structures Free-floating distributed implants Humans Implants inductive link Magnetic heads magnetic resonance Mathematical models Optical resonators Optimization Position (location) Power efficiency Prostheses and Implants Prototypes Receivers Robustness Safety engineering Segmentation Separation Simulation Wireless power transmission Wireless Technology |
title | Robust Wireless Power Transmission to mm-Sized Free-Floating Distributed Implants |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T00%3A31%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Wireless%20Power%20Transmission%20to%20mm-Sized%20Free-Floating%20Distributed%20Implants&rft.jtitle=IEEE%20transactions%20on%20biomedical%20circuits%20and%20systems&rft.au=Mirbozorgi,%20S.%20Abdollah&rft.date=2017-06-01&rft.volume=11&rft.issue=3&rft.spage=692&rft.epage=702&rft.pages=692-702&rft.issn=1932-4545&rft.eissn=1940-9990&rft.coden=ITBCCW&rft_id=info:doi/10.1109/TBCAS.2017.2663358&rft_dat=%3Cproquest_RIE%3E1899414928%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1902275012&rft_id=info:pmid/28504947&rft_ieee_id=7926319&rfr_iscdi=true |