Preclinical Comparison of Mechanistically Different Antiseizure, Antinociceptive, and/or Antidepressant Drugs in a Battery of Rodent Models of Nociceptive and Neuropathic Pain
The series of experiments herein evaluated prototype drugs representing different mechanisms of antiseizure, antinociceptive or antidepressant action in a battery of preclinical pain models in adult male CF#1 mice (formalin, writhing, and tail flick) and Sprague Dawley rats partial sciatic nerve lig...
Gespeichert in:
Veröffentlicht in: | Neurochemical research 2017-07, Vol.42 (7), p.1995-2010 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2010 |
---|---|
container_issue | 7 |
container_start_page | 1995 |
container_title | Neurochemical research |
container_volume | 42 |
creator | Smith, Misty D. Woodhead, Jose H. Handy, Laura J. Pruess, Timothy H. Vanegas, Fabiola Grussendorf, Erin Grussendorf, Joel White, Karen Bulaj, Karolina K. Krumin, Reisa K. Hunt, Megan Wilcox, Karen S. |
description | The series of experiments herein evaluated prototype drugs representing different mechanisms of antiseizure, antinociceptive or antidepressant action in a battery of preclinical pain models in adult male CF#1 mice (formalin, writhing, and tail flick) and Sprague Dawley rats partial sciatic nerve ligation (PSNL). In the formalin assay, phenytoin (PHT, 6 mg/kg), sodium valproate (VPA, 300 mg/kg), amitriptyline (AMI, 7.5 and 15 mg/kg), gabapentin (GBP, 30 and 70 mg/kg), tiagabine (TGB, 5 and 15 mg/kg), and acetominophen (APAP, 250 and 500 mg/kg) reduced both phases of the formalin response to ≤ 25% of vehicle-treated mice. In the acetic acid induced writhing assay, VPA (300 mg/kg), ethosuximide (ETX, 300 mg/kg), morphine (MOR, 5 & 10 mg/kg), GBP (10, 30, and 60 mg/kg), TGB (15 mg/kg), levetiracetam (LEV, 300 mg/kg), felbamate (FBM, 80 mg/kg) and APAP (250 mg/kg) reduced writhing to ≤ 25% of vehicle-treated mice. In the tail flick test, MOR (1.25-5 mg/kg), AMI (15 mg/kg) and TGB (5 mg/kg) demonstrated significant antinociceptive effects. Finally, carbamazepine (CBZ, 20 and 50 mg/kg), VPA, MOR (2 and 4 mg/kg), AMI (12 mg/kg), TPM (100 mg/kg), lamotrigine (LTG, 40 mg/kg), GBP (60 mg/kg), TGB (15 mg/kg), FBM (35 mg/kg), and APAP (250 mg/kg) were effective in the PSNL model. Thus, TGB was the only prototype compound with significant analgesic effects in each of the four models, while AMI, GBP, APAP, and MOR each improved three of the four pain phenotypes. This study highlights the importance evaluating novel targets in a variety of pain phenotypes. |
doi_str_mv | 10.1007/s11064-017-2286-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1899408516</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1917626831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-1661a2e8228a07c765eefdbdf94b149b557e3be9b90424d92efd951f216dbf33</originalsourceid><addsrcrecordid>eNp1Uc1u1DAQthAVXQoPwAVZ4sKBtB4nceJj2Rao1JYK9W45zrh1lbWDnSAtL9VXxOmWgpA4jfz9zcgfIW-AHQJjzVECYKIqGDQF560o5DOygropCyFZ-ZysWJnZEiTbJy9TumMsuzi8IPu8rVkLTbUi91cRzeC8M3qg67AZdXQpeBosvUBzq71L08INW3rirMWIfqLHfnIJ3c854oeHhw_GGRwn9yMD2vdHIT7gPY4RU9LZcxLnm0Sdp5p-1NOEcbvs-Bb6JfAijyEtwOWfpCWIXuIcw6inW2folXb-Fdmzekj4-nEekOtPp9frL8X5189n6-PzwpQNnwoQAjTHNn-LZo1pRI1o-663suqgkl1dN1h2KDvJKl71kmdW1mA5iL6zZXlA3u9ixxi-z5gmtXHJ4DBoj2FOClopK9bWILL03T_SuzBHn49TIKERXLQlZBXsVCaGlCJaNUa30XGrgKmlTLUrU-Uy1VKmktnz9jF57jbYPzl-t5cFfCdImfI3GP9a_d_UX8wFrOw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1917626831</pqid></control><display><type>article</type><title>Preclinical Comparison of Mechanistically Different Antiseizure, Antinociceptive, and/or Antidepressant Drugs in a Battery of Rodent Models of Nociceptive and Neuropathic Pain</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Smith, Misty D. ; Woodhead, Jose H. ; Handy, Laura J. ; Pruess, Timothy H. ; Vanegas, Fabiola ; Grussendorf, Erin ; Grussendorf, Joel ; White, Karen ; Bulaj, Karolina K. ; Krumin, Reisa K. ; Hunt, Megan ; Wilcox, Karen S.</creator><creatorcontrib>Smith, Misty D. ; Woodhead, Jose H. ; Handy, Laura J. ; Pruess, Timothy H. ; Vanegas, Fabiola ; Grussendorf, Erin ; Grussendorf, Joel ; White, Karen ; Bulaj, Karolina K. ; Krumin, Reisa K. ; Hunt, Megan ; Wilcox, Karen S.</creatorcontrib><description>The series of experiments herein evaluated prototype drugs representing different mechanisms of antiseizure, antinociceptive or antidepressant action in a battery of preclinical pain models in adult male CF#1 mice (formalin, writhing, and tail flick) and Sprague Dawley rats partial sciatic nerve ligation (PSNL). In the formalin assay, phenytoin (PHT, 6 mg/kg), sodium valproate (VPA, 300 mg/kg), amitriptyline (AMI, 7.5 and 15 mg/kg), gabapentin (GBP, 30 and 70 mg/kg), tiagabine (TGB, 5 and 15 mg/kg), and acetominophen (APAP, 250 and 500 mg/kg) reduced both phases of the formalin response to ≤ 25% of vehicle-treated mice. In the acetic acid induced writhing assay, VPA (300 mg/kg), ethosuximide (ETX, 300 mg/kg), morphine (MOR, 5 & 10 mg/kg), GBP (10, 30, and 60 mg/kg), TGB (15 mg/kg), levetiracetam (LEV, 300 mg/kg), felbamate (FBM, 80 mg/kg) and APAP (250 mg/kg) reduced writhing to ≤ 25% of vehicle-treated mice. In the tail flick test, MOR (1.25-5 mg/kg), AMI (15 mg/kg) and TGB (5 mg/kg) demonstrated significant antinociceptive effects. Finally, carbamazepine (CBZ, 20 and 50 mg/kg), VPA, MOR (2 and 4 mg/kg), AMI (12 mg/kg), TPM (100 mg/kg), lamotrigine (LTG, 40 mg/kg), GBP (60 mg/kg), TGB (15 mg/kg), FBM (35 mg/kg), and APAP (250 mg/kg) were effective in the PSNL model. Thus, TGB was the only prototype compound with significant analgesic effects in each of the four models, while AMI, GBP, APAP, and MOR each improved three of the four pain phenotypes. This study highlights the importance evaluating novel targets in a variety of pain phenotypes.</description><identifier>ISSN: 0364-3190</identifier><identifier>EISSN: 1573-6903</identifier><identifier>DOI: 10.1007/s11064-017-2286-9</identifier><identifier>PMID: 28508174</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Acetic acid ; Amitriptyline ; Analgesics ; Analgesics - pharmacology ; Analgesics - therapeutic use ; Animal models ; Animals ; Anticonvulsants - pharmacology ; Anticonvulsants - therapeutic use ; Antidepressants ; Antidepressive Agents - pharmacology ; Antidepressive Agents - therapeutic use ; Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Carbamazepine ; Cell Biology ; Disease Models, Animal ; Dose-Response Relationship, Drug ; Drug development ; Drug Evaluation, Preclinical - methods ; Drugs ; Etiracetam ; Formaldehyde ; Gabapentin ; Lamotrigine ; Male ; Mice ; Morphine ; Neuralgia ; Neuralgia - drug therapy ; Neuralgia - pathology ; Neurochemistry ; Neurology ; Neurosciences ; Nipecotic Acids - pharmacology ; Nipecotic Acids - therapeutic use ; Original Paper ; Pain ; Pain Measurement - drug effects ; Pain Measurement - methods ; Pain perception ; Phenytoin ; Rats ; Rats, Sprague-Dawley ; Rodentia ; Rodents ; Sciatic nerve ; Sodium ; Sodium valproate ; Tiagabine ; Valproic acid</subject><ispartof>Neurochemical research, 2017-07, Vol.42 (7), p.1995-2010</ispartof><rights>Springer Science+Business Media New York 2017</rights><rights>Neurochemical Research is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-1661a2e8228a07c765eefdbdf94b149b557e3be9b90424d92efd951f216dbf33</citedby><cites>FETCH-LOGICAL-c372t-1661a2e8228a07c765eefdbdf94b149b557e3be9b90424d92efd951f216dbf33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11064-017-2286-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11064-017-2286-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28508174$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Smith, Misty D.</creatorcontrib><creatorcontrib>Woodhead, Jose H.</creatorcontrib><creatorcontrib>Handy, Laura J.</creatorcontrib><creatorcontrib>Pruess, Timothy H.</creatorcontrib><creatorcontrib>Vanegas, Fabiola</creatorcontrib><creatorcontrib>Grussendorf, Erin</creatorcontrib><creatorcontrib>Grussendorf, Joel</creatorcontrib><creatorcontrib>White, Karen</creatorcontrib><creatorcontrib>Bulaj, Karolina K.</creatorcontrib><creatorcontrib>Krumin, Reisa K.</creatorcontrib><creatorcontrib>Hunt, Megan</creatorcontrib><creatorcontrib>Wilcox, Karen S.</creatorcontrib><title>Preclinical Comparison of Mechanistically Different Antiseizure, Antinociceptive, and/or Antidepressant Drugs in a Battery of Rodent Models of Nociceptive and Neuropathic Pain</title><title>Neurochemical research</title><addtitle>Neurochem Res</addtitle><addtitle>Neurochem Res</addtitle><description>The series of experiments herein evaluated prototype drugs representing different mechanisms of antiseizure, antinociceptive or antidepressant action in a battery of preclinical pain models in adult male CF#1 mice (formalin, writhing, and tail flick) and Sprague Dawley rats partial sciatic nerve ligation (PSNL). In the formalin assay, phenytoin (PHT, 6 mg/kg), sodium valproate (VPA, 300 mg/kg), amitriptyline (AMI, 7.5 and 15 mg/kg), gabapentin (GBP, 30 and 70 mg/kg), tiagabine (TGB, 5 and 15 mg/kg), and acetominophen (APAP, 250 and 500 mg/kg) reduced both phases of the formalin response to ≤ 25% of vehicle-treated mice. In the acetic acid induced writhing assay, VPA (300 mg/kg), ethosuximide (ETX, 300 mg/kg), morphine (MOR, 5 & 10 mg/kg), GBP (10, 30, and 60 mg/kg), TGB (15 mg/kg), levetiracetam (LEV, 300 mg/kg), felbamate (FBM, 80 mg/kg) and APAP (250 mg/kg) reduced writhing to ≤ 25% of vehicle-treated mice. In the tail flick test, MOR (1.25-5 mg/kg), AMI (15 mg/kg) and TGB (5 mg/kg) demonstrated significant antinociceptive effects. Finally, carbamazepine (CBZ, 20 and 50 mg/kg), VPA, MOR (2 and 4 mg/kg), AMI (12 mg/kg), TPM (100 mg/kg), lamotrigine (LTG, 40 mg/kg), GBP (60 mg/kg), TGB (15 mg/kg), FBM (35 mg/kg), and APAP (250 mg/kg) were effective in the PSNL model. Thus, TGB was the only prototype compound with significant analgesic effects in each of the four models, while AMI, GBP, APAP, and MOR each improved three of the four pain phenotypes. This study highlights the importance evaluating novel targets in a variety of pain phenotypes.</description><subject>Acetic acid</subject><subject>Amitriptyline</subject><subject>Analgesics</subject><subject>Analgesics - pharmacology</subject><subject>Analgesics - therapeutic use</subject><subject>Animal models</subject><subject>Animals</subject><subject>Anticonvulsants - pharmacology</subject><subject>Anticonvulsants - therapeutic use</subject><subject>Antidepressants</subject><subject>Antidepressive Agents - pharmacology</subject><subject>Antidepressive Agents - therapeutic use</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Carbamazepine</subject><subject>Cell Biology</subject><subject>Disease Models, Animal</subject><subject>Dose-Response Relationship, Drug</subject><subject>Drug development</subject><subject>Drug Evaluation, Preclinical - methods</subject><subject>Drugs</subject><subject>Etiracetam</subject><subject>Formaldehyde</subject><subject>Gabapentin</subject><subject>Lamotrigine</subject><subject>Male</subject><subject>Mice</subject><subject>Morphine</subject><subject>Neuralgia</subject><subject>Neuralgia - drug therapy</subject><subject>Neuralgia - pathology</subject><subject>Neurochemistry</subject><subject>Neurology</subject><subject>Neurosciences</subject><subject>Nipecotic Acids - pharmacology</subject><subject>Nipecotic Acids - therapeutic use</subject><subject>Original Paper</subject><subject>Pain</subject><subject>Pain Measurement - drug effects</subject><subject>Pain Measurement - methods</subject><subject>Pain perception</subject><subject>Phenytoin</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Rodentia</subject><subject>Rodents</subject><subject>Sciatic nerve</subject><subject>Sodium</subject><subject>Sodium valproate</subject><subject>Tiagabine</subject><subject>Valproic acid</subject><issn>0364-3190</issn><issn>1573-6903</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1Uc1u1DAQthAVXQoPwAVZ4sKBtB4nceJj2Rao1JYK9W45zrh1lbWDnSAtL9VXxOmWgpA4jfz9zcgfIW-AHQJjzVECYKIqGDQF560o5DOygropCyFZ-ZysWJnZEiTbJy9TumMsuzi8IPu8rVkLTbUi91cRzeC8M3qg67AZdXQpeBosvUBzq71L08INW3rirMWIfqLHfnIJ3c854oeHhw_GGRwn9yMD2vdHIT7gPY4RU9LZcxLnm0Sdp5p-1NOEcbvs-Bb6JfAijyEtwOWfpCWIXuIcw6inW2folXb-Fdmzekj4-nEekOtPp9frL8X5189n6-PzwpQNnwoQAjTHNn-LZo1pRI1o-663suqgkl1dN1h2KDvJKl71kmdW1mA5iL6zZXlA3u9ixxi-z5gmtXHJ4DBoj2FOClopK9bWILL03T_SuzBHn49TIKERXLQlZBXsVCaGlCJaNUa30XGrgKmlTLUrU-Uy1VKmktnz9jF57jbYPzl-t5cFfCdImfI3GP9a_d_UX8wFrOw</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Smith, Misty D.</creator><creator>Woodhead, Jose H.</creator><creator>Handy, Laura J.</creator><creator>Pruess, Timothy H.</creator><creator>Vanegas, Fabiola</creator><creator>Grussendorf, Erin</creator><creator>Grussendorf, Joel</creator><creator>White, Karen</creator><creator>Bulaj, Karolina K.</creator><creator>Krumin, Reisa K.</creator><creator>Hunt, Megan</creator><creator>Wilcox, Karen S.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>20170701</creationdate><title>Preclinical Comparison of Mechanistically Different Antiseizure, Antinociceptive, and/or Antidepressant Drugs in a Battery of Rodent Models of Nociceptive and Neuropathic Pain</title><author>Smith, Misty D. ; Woodhead, Jose H. ; Handy, Laura J. ; Pruess, Timothy H. ; Vanegas, Fabiola ; Grussendorf, Erin ; Grussendorf, Joel ; White, Karen ; Bulaj, Karolina K. ; Krumin, Reisa K. ; Hunt, Megan ; Wilcox, Karen S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-1661a2e8228a07c765eefdbdf94b149b557e3be9b90424d92efd951f216dbf33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acetic acid</topic><topic>Amitriptyline</topic><topic>Analgesics</topic><topic>Analgesics - pharmacology</topic><topic>Analgesics - therapeutic use</topic><topic>Animal models</topic><topic>Animals</topic><topic>Anticonvulsants - pharmacology</topic><topic>Anticonvulsants - therapeutic use</topic><topic>Antidepressants</topic><topic>Antidepressive Agents - pharmacology</topic><topic>Antidepressive Agents - therapeutic use</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Carbamazepine</topic><topic>Cell Biology</topic><topic>Disease Models, Animal</topic><topic>Dose-Response Relationship, Drug</topic><topic>Drug development</topic><topic>Drug Evaluation, Preclinical - methods</topic><topic>Drugs</topic><topic>Etiracetam</topic><topic>Formaldehyde</topic><topic>Gabapentin</topic><topic>Lamotrigine</topic><topic>Male</topic><topic>Mice</topic><topic>Morphine</topic><topic>Neuralgia</topic><topic>Neuralgia - drug therapy</topic><topic>Neuralgia - pathology</topic><topic>Neurochemistry</topic><topic>Neurology</topic><topic>Neurosciences</topic><topic>Nipecotic Acids - pharmacology</topic><topic>Nipecotic Acids - therapeutic use</topic><topic>Original Paper</topic><topic>Pain</topic><topic>Pain Measurement - drug effects</topic><topic>Pain Measurement - methods</topic><topic>Pain perception</topic><topic>Phenytoin</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Rodentia</topic><topic>Rodents</topic><topic>Sciatic nerve</topic><topic>Sodium</topic><topic>Sodium valproate</topic><topic>Tiagabine</topic><topic>Valproic acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smith, Misty D.</creatorcontrib><creatorcontrib>Woodhead, Jose H.</creatorcontrib><creatorcontrib>Handy, Laura J.</creatorcontrib><creatorcontrib>Pruess, Timothy H.</creatorcontrib><creatorcontrib>Vanegas, Fabiola</creatorcontrib><creatorcontrib>Grussendorf, Erin</creatorcontrib><creatorcontrib>Grussendorf, Joel</creatorcontrib><creatorcontrib>White, Karen</creatorcontrib><creatorcontrib>Bulaj, Karolina K.</creatorcontrib><creatorcontrib>Krumin, Reisa K.</creatorcontrib><creatorcontrib>Hunt, Megan</creatorcontrib><creatorcontrib>Wilcox, Karen S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>Proquest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Neurochemical research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smith, Misty D.</au><au>Woodhead, Jose H.</au><au>Handy, Laura J.</au><au>Pruess, Timothy H.</au><au>Vanegas, Fabiola</au><au>Grussendorf, Erin</au><au>Grussendorf, Joel</au><au>White, Karen</au><au>Bulaj, Karolina K.</au><au>Krumin, Reisa K.</au><au>Hunt, Megan</au><au>Wilcox, Karen S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preclinical Comparison of Mechanistically Different Antiseizure, Antinociceptive, and/or Antidepressant Drugs in a Battery of Rodent Models of Nociceptive and Neuropathic Pain</atitle><jtitle>Neurochemical research</jtitle><stitle>Neurochem Res</stitle><addtitle>Neurochem Res</addtitle><date>2017-07-01</date><risdate>2017</risdate><volume>42</volume><issue>7</issue><spage>1995</spage><epage>2010</epage><pages>1995-2010</pages><issn>0364-3190</issn><eissn>1573-6903</eissn><abstract>The series of experiments herein evaluated prototype drugs representing different mechanisms of antiseizure, antinociceptive or antidepressant action in a battery of preclinical pain models in adult male CF#1 mice (formalin, writhing, and tail flick) and Sprague Dawley rats partial sciatic nerve ligation (PSNL). In the formalin assay, phenytoin (PHT, 6 mg/kg), sodium valproate (VPA, 300 mg/kg), amitriptyline (AMI, 7.5 and 15 mg/kg), gabapentin (GBP, 30 and 70 mg/kg), tiagabine (TGB, 5 and 15 mg/kg), and acetominophen (APAP, 250 and 500 mg/kg) reduced both phases of the formalin response to ≤ 25% of vehicle-treated mice. In the acetic acid induced writhing assay, VPA (300 mg/kg), ethosuximide (ETX, 300 mg/kg), morphine (MOR, 5 & 10 mg/kg), GBP (10, 30, and 60 mg/kg), TGB (15 mg/kg), levetiracetam (LEV, 300 mg/kg), felbamate (FBM, 80 mg/kg) and APAP (250 mg/kg) reduced writhing to ≤ 25% of vehicle-treated mice. In the tail flick test, MOR (1.25-5 mg/kg), AMI (15 mg/kg) and TGB (5 mg/kg) demonstrated significant antinociceptive effects. Finally, carbamazepine (CBZ, 20 and 50 mg/kg), VPA, MOR (2 and 4 mg/kg), AMI (12 mg/kg), TPM (100 mg/kg), lamotrigine (LTG, 40 mg/kg), GBP (60 mg/kg), TGB (15 mg/kg), FBM (35 mg/kg), and APAP (250 mg/kg) were effective in the PSNL model. Thus, TGB was the only prototype compound with significant analgesic effects in each of the four models, while AMI, GBP, APAP, and MOR each improved three of the four pain phenotypes. This study highlights the importance evaluating novel targets in a variety of pain phenotypes.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>28508174</pmid><doi>10.1007/s11064-017-2286-9</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0364-3190 |
ispartof | Neurochemical research, 2017-07, Vol.42 (7), p.1995-2010 |
issn | 0364-3190 1573-6903 |
language | eng |
recordid | cdi_proquest_miscellaneous_1899408516 |
source | MEDLINE; SpringerNature Journals |
subjects | Acetic acid Amitriptyline Analgesics Analgesics - pharmacology Analgesics - therapeutic use Animal models Animals Anticonvulsants - pharmacology Anticonvulsants - therapeutic use Antidepressants Antidepressive Agents - pharmacology Antidepressive Agents - therapeutic use Biochemistry Biomedical and Life Sciences Biomedicine Carbamazepine Cell Biology Disease Models, Animal Dose-Response Relationship, Drug Drug development Drug Evaluation, Preclinical - methods Drugs Etiracetam Formaldehyde Gabapentin Lamotrigine Male Mice Morphine Neuralgia Neuralgia - drug therapy Neuralgia - pathology Neurochemistry Neurology Neurosciences Nipecotic Acids - pharmacology Nipecotic Acids - therapeutic use Original Paper Pain Pain Measurement - drug effects Pain Measurement - methods Pain perception Phenytoin Rats Rats, Sprague-Dawley Rodentia Rodents Sciatic nerve Sodium Sodium valproate Tiagabine Valproic acid |
title | Preclinical Comparison of Mechanistically Different Antiseizure, Antinociceptive, and/or Antidepressant Drugs in a Battery of Rodent Models of Nociceptive and Neuropathic Pain |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T17%3A18%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preclinical%20Comparison%20of%20Mechanistically%20Different%20Antiseizure,%20Antinociceptive,%20and/or%20Antidepressant%20Drugs%20in%20a%20Battery%20of%20Rodent%20Models%20of%20Nociceptive%20and%20Neuropathic%20Pain&rft.jtitle=Neurochemical%20research&rft.au=Smith,%20Misty%20D.&rft.date=2017-07-01&rft.volume=42&rft.issue=7&rft.spage=1995&rft.epage=2010&rft.pages=1995-2010&rft.issn=0364-3190&rft.eissn=1573-6903&rft_id=info:doi/10.1007/s11064-017-2286-9&rft_dat=%3Cproquest_cross%3E1917626831%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1917626831&rft_id=info:pmid/28508174&rfr_iscdi=true |