Preclinical Comparison of Mechanistically Different Antiseizure, Antinociceptive, and/or Antidepressant Drugs in a Battery of Rodent Models of Nociceptive and Neuropathic Pain

The series of experiments herein evaluated prototype drugs representing different mechanisms of antiseizure, antinociceptive or antidepressant action in a battery of preclinical pain models in adult male CF#1 mice (formalin, writhing, and tail flick) and Sprague Dawley rats partial sciatic nerve lig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurochemical research 2017-07, Vol.42 (7), p.1995-2010
Hauptverfasser: Smith, Misty D., Woodhead, Jose H., Handy, Laura J., Pruess, Timothy H., Vanegas, Fabiola, Grussendorf, Erin, Grussendorf, Joel, White, Karen, Bulaj, Karolina K., Krumin, Reisa K., Hunt, Megan, Wilcox, Karen S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2010
container_issue 7
container_start_page 1995
container_title Neurochemical research
container_volume 42
creator Smith, Misty D.
Woodhead, Jose H.
Handy, Laura J.
Pruess, Timothy H.
Vanegas, Fabiola
Grussendorf, Erin
Grussendorf, Joel
White, Karen
Bulaj, Karolina K.
Krumin, Reisa K.
Hunt, Megan
Wilcox, Karen S.
description The series of experiments herein evaluated prototype drugs representing different mechanisms of antiseizure, antinociceptive or antidepressant action in a battery of preclinical pain models in adult male CF#1 mice (formalin, writhing, and tail flick) and Sprague Dawley rats partial sciatic nerve ligation (PSNL). In the formalin assay, phenytoin (PHT, 6 mg/kg), sodium valproate (VPA, 300 mg/kg), amitriptyline (AMI, 7.5 and 15 mg/kg), gabapentin (GBP, 30 and 70 mg/kg), tiagabine (TGB, 5 and 15 mg/kg), and acetominophen (APAP, 250 and 500 mg/kg) reduced both phases of the formalin response to ≤ 25% of vehicle-treated mice. In the acetic acid induced writhing assay, VPA (300 mg/kg), ethosuximide (ETX, 300 mg/kg), morphine (MOR, 5 & 10 mg/kg), GBP (10, 30, and 60 mg/kg), TGB (15 mg/kg), levetiracetam (LEV, 300 mg/kg), felbamate (FBM, 80 mg/kg) and APAP (250 mg/kg) reduced writhing to ≤ 25% of vehicle-treated mice. In the tail flick test, MOR (1.25-5 mg/kg), AMI (15 mg/kg) and TGB (5 mg/kg) demonstrated significant antinociceptive effects. Finally, carbamazepine (CBZ, 20 and 50 mg/kg), VPA, MOR (2 and 4 mg/kg), AMI (12 mg/kg), TPM (100 mg/kg), lamotrigine (LTG, 40 mg/kg), GBP (60 mg/kg), TGB (15 mg/kg), FBM (35 mg/kg), and APAP (250 mg/kg) were effective in the PSNL model. Thus, TGB was the only prototype compound with significant analgesic effects in each of the four models, while AMI, GBP, APAP, and MOR each improved three of the four pain phenotypes. This study highlights the importance evaluating novel targets in a variety of pain phenotypes.
doi_str_mv 10.1007/s11064-017-2286-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1899408516</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1917626831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-1661a2e8228a07c765eefdbdf94b149b557e3be9b90424d92efd951f216dbf33</originalsourceid><addsrcrecordid>eNp1Uc1u1DAQthAVXQoPwAVZ4sKBtB4nceJj2Rao1JYK9W45zrh1lbWDnSAtL9VXxOmWgpA4jfz9zcgfIW-AHQJjzVECYKIqGDQF560o5DOygropCyFZ-ZysWJnZEiTbJy9TumMsuzi8IPu8rVkLTbUi91cRzeC8M3qg67AZdXQpeBosvUBzq71L08INW3rirMWIfqLHfnIJ3c854oeHhw_GGRwn9yMD2vdHIT7gPY4RU9LZcxLnm0Sdp5p-1NOEcbvs-Bb6JfAijyEtwOWfpCWIXuIcw6inW2folXb-Fdmzekj4-nEekOtPp9frL8X5189n6-PzwpQNnwoQAjTHNn-LZo1pRI1o-663suqgkl1dN1h2KDvJKl71kmdW1mA5iL6zZXlA3u9ixxi-z5gmtXHJ4DBoj2FOClopK9bWILL03T_SuzBHn49TIKERXLQlZBXsVCaGlCJaNUa30XGrgKmlTLUrU-Uy1VKmktnz9jF57jbYPzl-t5cFfCdImfI3GP9a_d_UX8wFrOw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1917626831</pqid></control><display><type>article</type><title>Preclinical Comparison of Mechanistically Different Antiseizure, Antinociceptive, and/or Antidepressant Drugs in a Battery of Rodent Models of Nociceptive and Neuropathic Pain</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Smith, Misty D. ; Woodhead, Jose H. ; Handy, Laura J. ; Pruess, Timothy H. ; Vanegas, Fabiola ; Grussendorf, Erin ; Grussendorf, Joel ; White, Karen ; Bulaj, Karolina K. ; Krumin, Reisa K. ; Hunt, Megan ; Wilcox, Karen S.</creator><creatorcontrib>Smith, Misty D. ; Woodhead, Jose H. ; Handy, Laura J. ; Pruess, Timothy H. ; Vanegas, Fabiola ; Grussendorf, Erin ; Grussendorf, Joel ; White, Karen ; Bulaj, Karolina K. ; Krumin, Reisa K. ; Hunt, Megan ; Wilcox, Karen S.</creatorcontrib><description>The series of experiments herein evaluated prototype drugs representing different mechanisms of antiseizure, antinociceptive or antidepressant action in a battery of preclinical pain models in adult male CF#1 mice (formalin, writhing, and tail flick) and Sprague Dawley rats partial sciatic nerve ligation (PSNL). In the formalin assay, phenytoin (PHT, 6 mg/kg), sodium valproate (VPA, 300 mg/kg), amitriptyline (AMI, 7.5 and 15 mg/kg), gabapentin (GBP, 30 and 70 mg/kg), tiagabine (TGB, 5 and 15 mg/kg), and acetominophen (APAP, 250 and 500 mg/kg) reduced both phases of the formalin response to ≤ 25% of vehicle-treated mice. In the acetic acid induced writhing assay, VPA (300 mg/kg), ethosuximide (ETX, 300 mg/kg), morphine (MOR, 5 &amp; 10 mg/kg), GBP (10, 30, and 60 mg/kg), TGB (15 mg/kg), levetiracetam (LEV, 300 mg/kg), felbamate (FBM, 80 mg/kg) and APAP (250 mg/kg) reduced writhing to ≤ 25% of vehicle-treated mice. In the tail flick test, MOR (1.25-5 mg/kg), AMI (15 mg/kg) and TGB (5 mg/kg) demonstrated significant antinociceptive effects. Finally, carbamazepine (CBZ, 20 and 50 mg/kg), VPA, MOR (2 and 4 mg/kg), AMI (12 mg/kg), TPM (100 mg/kg), lamotrigine (LTG, 40 mg/kg), GBP (60 mg/kg), TGB (15 mg/kg), FBM (35 mg/kg), and APAP (250 mg/kg) were effective in the PSNL model. Thus, TGB was the only prototype compound with significant analgesic effects in each of the four models, while AMI, GBP, APAP, and MOR each improved three of the four pain phenotypes. This study highlights the importance evaluating novel targets in a variety of pain phenotypes.</description><identifier>ISSN: 0364-3190</identifier><identifier>EISSN: 1573-6903</identifier><identifier>DOI: 10.1007/s11064-017-2286-9</identifier><identifier>PMID: 28508174</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Acetic acid ; Amitriptyline ; Analgesics ; Analgesics - pharmacology ; Analgesics - therapeutic use ; Animal models ; Animals ; Anticonvulsants - pharmacology ; Anticonvulsants - therapeutic use ; Antidepressants ; Antidepressive Agents - pharmacology ; Antidepressive Agents - therapeutic use ; Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Carbamazepine ; Cell Biology ; Disease Models, Animal ; Dose-Response Relationship, Drug ; Drug development ; Drug Evaluation, Preclinical - methods ; Drugs ; Etiracetam ; Formaldehyde ; Gabapentin ; Lamotrigine ; Male ; Mice ; Morphine ; Neuralgia ; Neuralgia - drug therapy ; Neuralgia - pathology ; Neurochemistry ; Neurology ; Neurosciences ; Nipecotic Acids - pharmacology ; Nipecotic Acids - therapeutic use ; Original Paper ; Pain ; Pain Measurement - drug effects ; Pain Measurement - methods ; Pain perception ; Phenytoin ; Rats ; Rats, Sprague-Dawley ; Rodentia ; Rodents ; Sciatic nerve ; Sodium ; Sodium valproate ; Tiagabine ; Valproic acid</subject><ispartof>Neurochemical research, 2017-07, Vol.42 (7), p.1995-2010</ispartof><rights>Springer Science+Business Media New York 2017</rights><rights>Neurochemical Research is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-1661a2e8228a07c765eefdbdf94b149b557e3be9b90424d92efd951f216dbf33</citedby><cites>FETCH-LOGICAL-c372t-1661a2e8228a07c765eefdbdf94b149b557e3be9b90424d92efd951f216dbf33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11064-017-2286-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11064-017-2286-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28508174$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Smith, Misty D.</creatorcontrib><creatorcontrib>Woodhead, Jose H.</creatorcontrib><creatorcontrib>Handy, Laura J.</creatorcontrib><creatorcontrib>Pruess, Timothy H.</creatorcontrib><creatorcontrib>Vanegas, Fabiola</creatorcontrib><creatorcontrib>Grussendorf, Erin</creatorcontrib><creatorcontrib>Grussendorf, Joel</creatorcontrib><creatorcontrib>White, Karen</creatorcontrib><creatorcontrib>Bulaj, Karolina K.</creatorcontrib><creatorcontrib>Krumin, Reisa K.</creatorcontrib><creatorcontrib>Hunt, Megan</creatorcontrib><creatorcontrib>Wilcox, Karen S.</creatorcontrib><title>Preclinical Comparison of Mechanistically Different Antiseizure, Antinociceptive, and/or Antidepressant Drugs in a Battery of Rodent Models of Nociceptive and Neuropathic Pain</title><title>Neurochemical research</title><addtitle>Neurochem Res</addtitle><addtitle>Neurochem Res</addtitle><description>The series of experiments herein evaluated prototype drugs representing different mechanisms of antiseizure, antinociceptive or antidepressant action in a battery of preclinical pain models in adult male CF#1 mice (formalin, writhing, and tail flick) and Sprague Dawley rats partial sciatic nerve ligation (PSNL). In the formalin assay, phenytoin (PHT, 6 mg/kg), sodium valproate (VPA, 300 mg/kg), amitriptyline (AMI, 7.5 and 15 mg/kg), gabapentin (GBP, 30 and 70 mg/kg), tiagabine (TGB, 5 and 15 mg/kg), and acetominophen (APAP, 250 and 500 mg/kg) reduced both phases of the formalin response to ≤ 25% of vehicle-treated mice. In the acetic acid induced writhing assay, VPA (300 mg/kg), ethosuximide (ETX, 300 mg/kg), morphine (MOR, 5 &amp; 10 mg/kg), GBP (10, 30, and 60 mg/kg), TGB (15 mg/kg), levetiracetam (LEV, 300 mg/kg), felbamate (FBM, 80 mg/kg) and APAP (250 mg/kg) reduced writhing to ≤ 25% of vehicle-treated mice. In the tail flick test, MOR (1.25-5 mg/kg), AMI (15 mg/kg) and TGB (5 mg/kg) demonstrated significant antinociceptive effects. Finally, carbamazepine (CBZ, 20 and 50 mg/kg), VPA, MOR (2 and 4 mg/kg), AMI (12 mg/kg), TPM (100 mg/kg), lamotrigine (LTG, 40 mg/kg), GBP (60 mg/kg), TGB (15 mg/kg), FBM (35 mg/kg), and APAP (250 mg/kg) were effective in the PSNL model. Thus, TGB was the only prototype compound with significant analgesic effects in each of the four models, while AMI, GBP, APAP, and MOR each improved three of the four pain phenotypes. This study highlights the importance evaluating novel targets in a variety of pain phenotypes.</description><subject>Acetic acid</subject><subject>Amitriptyline</subject><subject>Analgesics</subject><subject>Analgesics - pharmacology</subject><subject>Analgesics - therapeutic use</subject><subject>Animal models</subject><subject>Animals</subject><subject>Anticonvulsants - pharmacology</subject><subject>Anticonvulsants - therapeutic use</subject><subject>Antidepressants</subject><subject>Antidepressive Agents - pharmacology</subject><subject>Antidepressive Agents - therapeutic use</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Carbamazepine</subject><subject>Cell Biology</subject><subject>Disease Models, Animal</subject><subject>Dose-Response Relationship, Drug</subject><subject>Drug development</subject><subject>Drug Evaluation, Preclinical - methods</subject><subject>Drugs</subject><subject>Etiracetam</subject><subject>Formaldehyde</subject><subject>Gabapentin</subject><subject>Lamotrigine</subject><subject>Male</subject><subject>Mice</subject><subject>Morphine</subject><subject>Neuralgia</subject><subject>Neuralgia - drug therapy</subject><subject>Neuralgia - pathology</subject><subject>Neurochemistry</subject><subject>Neurology</subject><subject>Neurosciences</subject><subject>Nipecotic Acids - pharmacology</subject><subject>Nipecotic Acids - therapeutic use</subject><subject>Original Paper</subject><subject>Pain</subject><subject>Pain Measurement - drug effects</subject><subject>Pain Measurement - methods</subject><subject>Pain perception</subject><subject>Phenytoin</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Rodentia</subject><subject>Rodents</subject><subject>Sciatic nerve</subject><subject>Sodium</subject><subject>Sodium valproate</subject><subject>Tiagabine</subject><subject>Valproic acid</subject><issn>0364-3190</issn><issn>1573-6903</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1Uc1u1DAQthAVXQoPwAVZ4sKBtB4nceJj2Rao1JYK9W45zrh1lbWDnSAtL9VXxOmWgpA4jfz9zcgfIW-AHQJjzVECYKIqGDQF560o5DOygropCyFZ-ZysWJnZEiTbJy9TumMsuzi8IPu8rVkLTbUi91cRzeC8M3qg67AZdXQpeBosvUBzq71L08INW3rirMWIfqLHfnIJ3c854oeHhw_GGRwn9yMD2vdHIT7gPY4RU9LZcxLnm0Sdp5p-1NOEcbvs-Bb6JfAijyEtwOWfpCWIXuIcw6inW2folXb-Fdmzekj4-nEekOtPp9frL8X5189n6-PzwpQNnwoQAjTHNn-LZo1pRI1o-663suqgkl1dN1h2KDvJKl71kmdW1mA5iL6zZXlA3u9ixxi-z5gmtXHJ4DBoj2FOClopK9bWILL03T_SuzBHn49TIKERXLQlZBXsVCaGlCJaNUa30XGrgKmlTLUrU-Uy1VKmktnz9jF57jbYPzl-t5cFfCdImfI3GP9a_d_UX8wFrOw</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Smith, Misty D.</creator><creator>Woodhead, Jose H.</creator><creator>Handy, Laura J.</creator><creator>Pruess, Timothy H.</creator><creator>Vanegas, Fabiola</creator><creator>Grussendorf, Erin</creator><creator>Grussendorf, Joel</creator><creator>White, Karen</creator><creator>Bulaj, Karolina K.</creator><creator>Krumin, Reisa K.</creator><creator>Hunt, Megan</creator><creator>Wilcox, Karen S.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>20170701</creationdate><title>Preclinical Comparison of Mechanistically Different Antiseizure, Antinociceptive, and/or Antidepressant Drugs in a Battery of Rodent Models of Nociceptive and Neuropathic Pain</title><author>Smith, Misty D. ; Woodhead, Jose H. ; Handy, Laura J. ; Pruess, Timothy H. ; Vanegas, Fabiola ; Grussendorf, Erin ; Grussendorf, Joel ; White, Karen ; Bulaj, Karolina K. ; Krumin, Reisa K. ; Hunt, Megan ; Wilcox, Karen S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-1661a2e8228a07c765eefdbdf94b149b557e3be9b90424d92efd951f216dbf33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acetic acid</topic><topic>Amitriptyline</topic><topic>Analgesics</topic><topic>Analgesics - pharmacology</topic><topic>Analgesics - therapeutic use</topic><topic>Animal models</topic><topic>Animals</topic><topic>Anticonvulsants - pharmacology</topic><topic>Anticonvulsants - therapeutic use</topic><topic>Antidepressants</topic><topic>Antidepressive Agents - pharmacology</topic><topic>Antidepressive Agents - therapeutic use</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Carbamazepine</topic><topic>Cell Biology</topic><topic>Disease Models, Animal</topic><topic>Dose-Response Relationship, Drug</topic><topic>Drug development</topic><topic>Drug Evaluation, Preclinical - methods</topic><topic>Drugs</topic><topic>Etiracetam</topic><topic>Formaldehyde</topic><topic>Gabapentin</topic><topic>Lamotrigine</topic><topic>Male</topic><topic>Mice</topic><topic>Morphine</topic><topic>Neuralgia</topic><topic>Neuralgia - drug therapy</topic><topic>Neuralgia - pathology</topic><topic>Neurochemistry</topic><topic>Neurology</topic><topic>Neurosciences</topic><topic>Nipecotic Acids - pharmacology</topic><topic>Nipecotic Acids - therapeutic use</topic><topic>Original Paper</topic><topic>Pain</topic><topic>Pain Measurement - drug effects</topic><topic>Pain Measurement - methods</topic><topic>Pain perception</topic><topic>Phenytoin</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Rodentia</topic><topic>Rodents</topic><topic>Sciatic nerve</topic><topic>Sodium</topic><topic>Sodium valproate</topic><topic>Tiagabine</topic><topic>Valproic acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smith, Misty D.</creatorcontrib><creatorcontrib>Woodhead, Jose H.</creatorcontrib><creatorcontrib>Handy, Laura J.</creatorcontrib><creatorcontrib>Pruess, Timothy H.</creatorcontrib><creatorcontrib>Vanegas, Fabiola</creatorcontrib><creatorcontrib>Grussendorf, Erin</creatorcontrib><creatorcontrib>Grussendorf, Joel</creatorcontrib><creatorcontrib>White, Karen</creatorcontrib><creatorcontrib>Bulaj, Karolina K.</creatorcontrib><creatorcontrib>Krumin, Reisa K.</creatorcontrib><creatorcontrib>Hunt, Megan</creatorcontrib><creatorcontrib>Wilcox, Karen S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>Proquest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Neurochemical research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smith, Misty D.</au><au>Woodhead, Jose H.</au><au>Handy, Laura J.</au><au>Pruess, Timothy H.</au><au>Vanegas, Fabiola</au><au>Grussendorf, Erin</au><au>Grussendorf, Joel</au><au>White, Karen</au><au>Bulaj, Karolina K.</au><au>Krumin, Reisa K.</au><au>Hunt, Megan</au><au>Wilcox, Karen S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preclinical Comparison of Mechanistically Different Antiseizure, Antinociceptive, and/or Antidepressant Drugs in a Battery of Rodent Models of Nociceptive and Neuropathic Pain</atitle><jtitle>Neurochemical research</jtitle><stitle>Neurochem Res</stitle><addtitle>Neurochem Res</addtitle><date>2017-07-01</date><risdate>2017</risdate><volume>42</volume><issue>7</issue><spage>1995</spage><epage>2010</epage><pages>1995-2010</pages><issn>0364-3190</issn><eissn>1573-6903</eissn><abstract>The series of experiments herein evaluated prototype drugs representing different mechanisms of antiseizure, antinociceptive or antidepressant action in a battery of preclinical pain models in adult male CF#1 mice (formalin, writhing, and tail flick) and Sprague Dawley rats partial sciatic nerve ligation (PSNL). In the formalin assay, phenytoin (PHT, 6 mg/kg), sodium valproate (VPA, 300 mg/kg), amitriptyline (AMI, 7.5 and 15 mg/kg), gabapentin (GBP, 30 and 70 mg/kg), tiagabine (TGB, 5 and 15 mg/kg), and acetominophen (APAP, 250 and 500 mg/kg) reduced both phases of the formalin response to ≤ 25% of vehicle-treated mice. In the acetic acid induced writhing assay, VPA (300 mg/kg), ethosuximide (ETX, 300 mg/kg), morphine (MOR, 5 &amp; 10 mg/kg), GBP (10, 30, and 60 mg/kg), TGB (15 mg/kg), levetiracetam (LEV, 300 mg/kg), felbamate (FBM, 80 mg/kg) and APAP (250 mg/kg) reduced writhing to ≤ 25% of vehicle-treated mice. In the tail flick test, MOR (1.25-5 mg/kg), AMI (15 mg/kg) and TGB (5 mg/kg) demonstrated significant antinociceptive effects. Finally, carbamazepine (CBZ, 20 and 50 mg/kg), VPA, MOR (2 and 4 mg/kg), AMI (12 mg/kg), TPM (100 mg/kg), lamotrigine (LTG, 40 mg/kg), GBP (60 mg/kg), TGB (15 mg/kg), FBM (35 mg/kg), and APAP (250 mg/kg) were effective in the PSNL model. Thus, TGB was the only prototype compound with significant analgesic effects in each of the four models, while AMI, GBP, APAP, and MOR each improved three of the four pain phenotypes. This study highlights the importance evaluating novel targets in a variety of pain phenotypes.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>28508174</pmid><doi>10.1007/s11064-017-2286-9</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0364-3190
ispartof Neurochemical research, 2017-07, Vol.42 (7), p.1995-2010
issn 0364-3190
1573-6903
language eng
recordid cdi_proquest_miscellaneous_1899408516
source MEDLINE; SpringerNature Journals
subjects Acetic acid
Amitriptyline
Analgesics
Analgesics - pharmacology
Analgesics - therapeutic use
Animal models
Animals
Anticonvulsants - pharmacology
Anticonvulsants - therapeutic use
Antidepressants
Antidepressive Agents - pharmacology
Antidepressive Agents - therapeutic use
Biochemistry
Biomedical and Life Sciences
Biomedicine
Carbamazepine
Cell Biology
Disease Models, Animal
Dose-Response Relationship, Drug
Drug development
Drug Evaluation, Preclinical - methods
Drugs
Etiracetam
Formaldehyde
Gabapentin
Lamotrigine
Male
Mice
Morphine
Neuralgia
Neuralgia - drug therapy
Neuralgia - pathology
Neurochemistry
Neurology
Neurosciences
Nipecotic Acids - pharmacology
Nipecotic Acids - therapeutic use
Original Paper
Pain
Pain Measurement - drug effects
Pain Measurement - methods
Pain perception
Phenytoin
Rats
Rats, Sprague-Dawley
Rodentia
Rodents
Sciatic nerve
Sodium
Sodium valproate
Tiagabine
Valproic acid
title Preclinical Comparison of Mechanistically Different Antiseizure, Antinociceptive, and/or Antidepressant Drugs in a Battery of Rodent Models of Nociceptive and Neuropathic Pain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T17%3A18%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preclinical%20Comparison%20of%20Mechanistically%20Different%20Antiseizure,%20Antinociceptive,%20and/or%20Antidepressant%20Drugs%20in%20a%20Battery%20of%20Rodent%20Models%20of%20Nociceptive%20and%20Neuropathic%20Pain&rft.jtitle=Neurochemical%20research&rft.au=Smith,%20Misty%20D.&rft.date=2017-07-01&rft.volume=42&rft.issue=7&rft.spage=1995&rft.epage=2010&rft.pages=1995-2010&rft.issn=0364-3190&rft.eissn=1573-6903&rft_id=info:doi/10.1007/s11064-017-2286-9&rft_dat=%3Cproquest_cross%3E1917626831%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1917626831&rft_id=info:pmid/28508174&rfr_iscdi=true