Characterization and quantitation of PVP content in a silicone hydrogel contact lens produced by dual-phase polymerization processing

Polyvinylpyrrolidone (PVP) has been incorporated over the years into numerous hydrogel contact lenses as both a primary matrix component and an internal wetting agent to increase lens wettability. In this study, complementary analytical techniques were used to characterize the PVP wetting agent comp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical materials research. Part B, Applied biomaterials Applied biomaterials, 2018-04, Vol.106 (3), p.1064-1072
Hauptverfasser: Hoteling, Andrew J, Nichols, William F, Harmon, Patricia S, Conlon, Shawn M, Nuñez, Ivan M, Hoff, Joseph W, Cabarcos, Orlando M, Steffen, Robert B, Hook, Daniel J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1072
container_issue 3
container_start_page 1064
container_title Journal of biomedical materials research. Part B, Applied biomaterials
container_volume 106
creator Hoteling, Andrew J
Nichols, William F
Harmon, Patricia S
Conlon, Shawn M
Nuñez, Ivan M
Hoff, Joseph W
Cabarcos, Orlando M
Steffen, Robert B
Hook, Daniel J
description Polyvinylpyrrolidone (PVP) has been incorporated over the years into numerous hydrogel contact lenses as both a primary matrix component and an internal wetting agent to increase lens wettability. In this study, complementary analytical techniques were used to characterize the PVP wetting agent component of senofilcon A and samfilcon A contact lenses, both in terms of chemical composition and amount present. Photo-differential scanning calorimetry (photo-DSC), gas chromatography with a flame ionization detector (GC-FID), and high-resolution/accurate mass (HR/AM) liquid chromatography-mass spectrometry (LC-MS) techniques confirmed dual phase reaction and curing of the samfilcon A silicone hydrogel material. Gel permeation chromatography (GPC) demonstrated that high molecular weight (HMW) polymer was present in isopropanol (IPA) extracts of both lenses. High-performance liquid chromatography (HPLC) effectively separated hydrophilic PVP from the hydrophobic silicone polymers present in the extracts. Collectively, atmospheric solids analysis probe mass spectrometry (ASAP MS), Fourier transform infrared (FTIR) spectroscopy, H nuclear magnetic resonance (NMR) spectroscopy, GC-FID, and LC-MS analyses of the lens extracts indicated that the majority of NVP is consumed during the second reaction phase of samfilcon A lens polymerization and exists as HMW PVP, similar to the PVP present in senofilcon A. GC-FID analysis of pyrolyzed samfilcon A and senofilcon A indicates fourfold greater PVP in samfilcon A compared with senofilcon A. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1064-1072, 2018.
doi_str_mv 10.1002/jbm.b.33904
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1899406384</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1899406384</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-7470a8194714e3f0a90f01cf479d0a7177c46d088a69853d36143bc0744b7dc33</originalsourceid><addsrcrecordid>eNpd0c1rHCEYBnApDc1He-o9CL0EwmxeR2fUY1jSphBIDkmv4qiTdZnRjc4cNvf-3zXZ7RZ6Ul5_PK_wIPSVwIIA1Ffrblx0C0olsA_ohDRNXTEpyMfDndNjdJrzuuAWGvoJHdeiAcFqcYJ-L1c6aTO55F_15GPAOlj8Musw-Wk3iD1--PWATQyTCxP2heDsB18GDq-2NsVnN7w_lxw8uJDxJkU7G2dxt8V21kO1Wens8CYO2_HfpqKMy9mH58_oqNdDdl_25xl6-n7zuLyt7u5__Fxe31WGCjpVnHHQgkjGCXO0By2hB2J6xqUFzQnnhrUWhNCtFA21tCWMdgY4Yx23htIzdLHLLatfZpcnNfps3DDo4OKcFRFSMmipYIV--4-u45xC-Z2qgdQMZEOaoi53yqSYc3K92iQ_6rRVBNRbO6q0ozr13k7R5_vMuRudPdi_ddA_l9-MEQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2012409515</pqid></control><display><type>article</type><title>Characterization and quantitation of PVP content in a silicone hydrogel contact lens produced by dual-phase polymerization processing</title><source>Access via Wiley Online Library</source><creator>Hoteling, Andrew J ; Nichols, William F ; Harmon, Patricia S ; Conlon, Shawn M ; Nuñez, Ivan M ; Hoff, Joseph W ; Cabarcos, Orlando M ; Steffen, Robert B ; Hook, Daniel J</creator><creatorcontrib>Hoteling, Andrew J ; Nichols, William F ; Harmon, Patricia S ; Conlon, Shawn M ; Nuñez, Ivan M ; Hoff, Joseph W ; Cabarcos, Orlando M ; Steffen, Robert B ; Hook, Daniel J</creatorcontrib><description>Polyvinylpyrrolidone (PVP) has been incorporated over the years into numerous hydrogel contact lenses as both a primary matrix component and an internal wetting agent to increase lens wettability. In this study, complementary analytical techniques were used to characterize the PVP wetting agent component of senofilcon A and samfilcon A contact lenses, both in terms of chemical composition and amount present. Photo-differential scanning calorimetry (photo-DSC), gas chromatography with a flame ionization detector (GC-FID), and high-resolution/accurate mass (HR/AM) liquid chromatography-mass spectrometry (LC-MS) techniques confirmed dual phase reaction and curing of the samfilcon A silicone hydrogel material. Gel permeation chromatography (GPC) demonstrated that high molecular weight (HMW) polymer was present in isopropanol (IPA) extracts of both lenses. High-performance liquid chromatography (HPLC) effectively separated hydrophilic PVP from the hydrophobic silicone polymers present in the extracts. Collectively, atmospheric solids analysis probe mass spectrometry (ASAP MS), Fourier transform infrared (FTIR) spectroscopy, H nuclear magnetic resonance (NMR) spectroscopy, GC-FID, and LC-MS analyses of the lens extracts indicated that the majority of NVP is consumed during the second reaction phase of samfilcon A lens polymerization and exists as HMW PVP, similar to the PVP present in senofilcon A. GC-FID analysis of pyrolyzed samfilcon A and senofilcon A indicates fourfold greater PVP in samfilcon A compared with senofilcon A. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1064-1072, 2018.</description><identifier>ISSN: 1552-4973</identifier><identifier>EISSN: 1552-4981</identifier><identifier>DOI: 10.1002/jbm.b.33904</identifier><identifier>PMID: 28508428</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Biomedical materials ; Calorimetry ; Chromatography ; Contact lenses ; Differential scanning calorimetry ; Flame ionization ; Flame ionization detectors ; Fourier transforms ; Gas chromatography ; High performance liquid chromatography ; Hydrogels ; Hydrophobicity ; Infrared analysis ; Ionization ; Ionization counters ; Liquid chromatography ; Magnetic lenses ; Mass spectrometry ; Mass spectroscopy ; Materials research ; Materials science ; Molecular weight ; NMR ; Nuclear magnetic resonance ; Polymerization ; Polymers ; Polyvinylpyrrolidone ; Quantitation ; Scientific imaging ; Silicone resins ; Silicones ; Spectroscopy ; Wettability ; Wetting</subject><ispartof>Journal of biomedical materials research. Part B, Applied biomaterials, 2018-04, Vol.106 (3), p.1064-1072</ispartof><rights>2017 Wiley Periodicals, Inc.</rights><rights>2018 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-7470a8194714e3f0a90f01cf479d0a7177c46d088a69853d36143bc0744b7dc33</citedby><cites>FETCH-LOGICAL-c383t-7470a8194714e3f0a90f01cf479d0a7177c46d088a69853d36143bc0744b7dc33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28508428$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hoteling, Andrew J</creatorcontrib><creatorcontrib>Nichols, William F</creatorcontrib><creatorcontrib>Harmon, Patricia S</creatorcontrib><creatorcontrib>Conlon, Shawn M</creatorcontrib><creatorcontrib>Nuñez, Ivan M</creatorcontrib><creatorcontrib>Hoff, Joseph W</creatorcontrib><creatorcontrib>Cabarcos, Orlando M</creatorcontrib><creatorcontrib>Steffen, Robert B</creatorcontrib><creatorcontrib>Hook, Daniel J</creatorcontrib><title>Characterization and quantitation of PVP content in a silicone hydrogel contact lens produced by dual-phase polymerization processing</title><title>Journal of biomedical materials research. Part B, Applied biomaterials</title><addtitle>J Biomed Mater Res B Appl Biomater</addtitle><description>Polyvinylpyrrolidone (PVP) has been incorporated over the years into numerous hydrogel contact lenses as both a primary matrix component and an internal wetting agent to increase lens wettability. In this study, complementary analytical techniques were used to characterize the PVP wetting agent component of senofilcon A and samfilcon A contact lenses, both in terms of chemical composition and amount present. Photo-differential scanning calorimetry (photo-DSC), gas chromatography with a flame ionization detector (GC-FID), and high-resolution/accurate mass (HR/AM) liquid chromatography-mass spectrometry (LC-MS) techniques confirmed dual phase reaction and curing of the samfilcon A silicone hydrogel material. Gel permeation chromatography (GPC) demonstrated that high molecular weight (HMW) polymer was present in isopropanol (IPA) extracts of both lenses. High-performance liquid chromatography (HPLC) effectively separated hydrophilic PVP from the hydrophobic silicone polymers present in the extracts. Collectively, atmospheric solids analysis probe mass spectrometry (ASAP MS), Fourier transform infrared (FTIR) spectroscopy, H nuclear magnetic resonance (NMR) spectroscopy, GC-FID, and LC-MS analyses of the lens extracts indicated that the majority of NVP is consumed during the second reaction phase of samfilcon A lens polymerization and exists as HMW PVP, similar to the PVP present in senofilcon A. GC-FID analysis of pyrolyzed samfilcon A and senofilcon A indicates fourfold greater PVP in samfilcon A compared with senofilcon A. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1064-1072, 2018.</description><subject>Biomedical materials</subject><subject>Calorimetry</subject><subject>Chromatography</subject><subject>Contact lenses</subject><subject>Differential scanning calorimetry</subject><subject>Flame ionization</subject><subject>Flame ionization detectors</subject><subject>Fourier transforms</subject><subject>Gas chromatography</subject><subject>High performance liquid chromatography</subject><subject>Hydrogels</subject><subject>Hydrophobicity</subject><subject>Infrared analysis</subject><subject>Ionization</subject><subject>Ionization counters</subject><subject>Liquid chromatography</subject><subject>Magnetic lenses</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Materials research</subject><subject>Materials science</subject><subject>Molecular weight</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Polymerization</subject><subject>Polymers</subject><subject>Polyvinylpyrrolidone</subject><subject>Quantitation</subject><subject>Scientific imaging</subject><subject>Silicone resins</subject><subject>Silicones</subject><subject>Spectroscopy</subject><subject>Wettability</subject><subject>Wetting</subject><issn>1552-4973</issn><issn>1552-4981</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpd0c1rHCEYBnApDc1He-o9CL0EwmxeR2fUY1jSphBIDkmv4qiTdZnRjc4cNvf-3zXZ7RZ6Ul5_PK_wIPSVwIIA1Ffrblx0C0olsA_ohDRNXTEpyMfDndNjdJrzuuAWGvoJHdeiAcFqcYJ-L1c6aTO55F_15GPAOlj8Musw-Wk3iD1--PWATQyTCxP2heDsB18GDq-2NsVnN7w_lxw8uJDxJkU7G2dxt8V21kO1Wens8CYO2_HfpqKMy9mH58_oqNdDdl_25xl6-n7zuLyt7u5__Fxe31WGCjpVnHHQgkjGCXO0By2hB2J6xqUFzQnnhrUWhNCtFA21tCWMdgY4Yx23htIzdLHLLatfZpcnNfps3DDo4OKcFRFSMmipYIV--4-u45xC-Z2qgdQMZEOaoi53yqSYc3K92iQ_6rRVBNRbO6q0ozr13k7R5_vMuRudPdi_ddA_l9-MEQ</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Hoteling, Andrew J</creator><creator>Nichols, William F</creator><creator>Harmon, Patricia S</creator><creator>Conlon, Shawn M</creator><creator>Nuñez, Ivan M</creator><creator>Hoff, Joseph W</creator><creator>Cabarcos, Orlando M</creator><creator>Steffen, Robert B</creator><creator>Hook, Daniel J</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20180401</creationdate><title>Characterization and quantitation of PVP content in a silicone hydrogel contact lens produced by dual-phase polymerization processing</title><author>Hoteling, Andrew J ; Nichols, William F ; Harmon, Patricia S ; Conlon, Shawn M ; Nuñez, Ivan M ; Hoff, Joseph W ; Cabarcos, Orlando M ; Steffen, Robert B ; Hook, Daniel J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-7470a8194714e3f0a90f01cf479d0a7177c46d088a69853d36143bc0744b7dc33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biomedical materials</topic><topic>Calorimetry</topic><topic>Chromatography</topic><topic>Contact lenses</topic><topic>Differential scanning calorimetry</topic><topic>Flame ionization</topic><topic>Flame ionization detectors</topic><topic>Fourier transforms</topic><topic>Gas chromatography</topic><topic>High performance liquid chromatography</topic><topic>Hydrogels</topic><topic>Hydrophobicity</topic><topic>Infrared analysis</topic><topic>Ionization</topic><topic>Ionization counters</topic><topic>Liquid chromatography</topic><topic>Magnetic lenses</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Materials research</topic><topic>Materials science</topic><topic>Molecular weight</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Polymerization</topic><topic>Polymers</topic><topic>Polyvinylpyrrolidone</topic><topic>Quantitation</topic><topic>Scientific imaging</topic><topic>Silicone resins</topic><topic>Silicones</topic><topic>Spectroscopy</topic><topic>Wettability</topic><topic>Wetting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hoteling, Andrew J</creatorcontrib><creatorcontrib>Nichols, William F</creatorcontrib><creatorcontrib>Harmon, Patricia S</creatorcontrib><creatorcontrib>Conlon, Shawn M</creatorcontrib><creatorcontrib>Nuñez, Ivan M</creatorcontrib><creatorcontrib>Hoff, Joseph W</creatorcontrib><creatorcontrib>Cabarcos, Orlando M</creatorcontrib><creatorcontrib>Steffen, Robert B</creatorcontrib><creatorcontrib>Hook, Daniel J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hoteling, Andrew J</au><au>Nichols, William F</au><au>Harmon, Patricia S</au><au>Conlon, Shawn M</au><au>Nuñez, Ivan M</au><au>Hoff, Joseph W</au><au>Cabarcos, Orlando M</au><au>Steffen, Robert B</au><au>Hook, Daniel J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization and quantitation of PVP content in a silicone hydrogel contact lens produced by dual-phase polymerization processing</atitle><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle><addtitle>J Biomed Mater Res B Appl Biomater</addtitle><date>2018-04-01</date><risdate>2018</risdate><volume>106</volume><issue>3</issue><spage>1064</spage><epage>1072</epage><pages>1064-1072</pages><issn>1552-4973</issn><eissn>1552-4981</eissn><abstract>Polyvinylpyrrolidone (PVP) has been incorporated over the years into numerous hydrogel contact lenses as both a primary matrix component and an internal wetting agent to increase lens wettability. In this study, complementary analytical techniques were used to characterize the PVP wetting agent component of senofilcon A and samfilcon A contact lenses, both in terms of chemical composition and amount present. Photo-differential scanning calorimetry (photo-DSC), gas chromatography with a flame ionization detector (GC-FID), and high-resolution/accurate mass (HR/AM) liquid chromatography-mass spectrometry (LC-MS) techniques confirmed dual phase reaction and curing of the samfilcon A silicone hydrogel material. Gel permeation chromatography (GPC) demonstrated that high molecular weight (HMW) polymer was present in isopropanol (IPA) extracts of both lenses. High-performance liquid chromatography (HPLC) effectively separated hydrophilic PVP from the hydrophobic silicone polymers present in the extracts. Collectively, atmospheric solids analysis probe mass spectrometry (ASAP MS), Fourier transform infrared (FTIR) spectroscopy, H nuclear magnetic resonance (NMR) spectroscopy, GC-FID, and LC-MS analyses of the lens extracts indicated that the majority of NVP is consumed during the second reaction phase of samfilcon A lens polymerization and exists as HMW PVP, similar to the PVP present in senofilcon A. GC-FID analysis of pyrolyzed samfilcon A and senofilcon A indicates fourfold greater PVP in samfilcon A compared with senofilcon A. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1064-1072, 2018.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28508428</pmid><doi>10.1002/jbm.b.33904</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1552-4973
ispartof Journal of biomedical materials research. Part B, Applied biomaterials, 2018-04, Vol.106 (3), p.1064-1072
issn 1552-4973
1552-4981
language eng
recordid cdi_proquest_miscellaneous_1899406384
source Access via Wiley Online Library
subjects Biomedical materials
Calorimetry
Chromatography
Contact lenses
Differential scanning calorimetry
Flame ionization
Flame ionization detectors
Fourier transforms
Gas chromatography
High performance liquid chromatography
Hydrogels
Hydrophobicity
Infrared analysis
Ionization
Ionization counters
Liquid chromatography
Magnetic lenses
Mass spectrometry
Mass spectroscopy
Materials research
Materials science
Molecular weight
NMR
Nuclear magnetic resonance
Polymerization
Polymers
Polyvinylpyrrolidone
Quantitation
Scientific imaging
Silicone resins
Silicones
Spectroscopy
Wettability
Wetting
title Characterization and quantitation of PVP content in a silicone hydrogel contact lens produced by dual-phase polymerization processing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A45%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20and%20quantitation%20of%20PVP%20content%20in%20a%20silicone%20hydrogel%20contact%20lens%20produced%20by%20dual-phase%20polymerization%20processing&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20B,%20Applied%20biomaterials&rft.au=Hoteling,%20Andrew%20J&rft.date=2018-04-01&rft.volume=106&rft.issue=3&rft.spage=1064&rft.epage=1072&rft.pages=1064-1072&rft.issn=1552-4973&rft.eissn=1552-4981&rft_id=info:doi/10.1002/jbm.b.33904&rft_dat=%3Cproquest_cross%3E1899406384%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2012409515&rft_id=info:pmid/28508428&rfr_iscdi=true