Apical constriction is driven by a pulsatile apical myosin network in delaminating Drosophila neuroblasts

Cell delamination is a conserved morphogenetic process important for the generation of cell diversity and maintenance of tissue homeostasis. Here, we used embryonic neuroblasts as a model to study the apical constriction process during cell delamination. We observe dynamic myosin signals both around...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Development (Cambridge) 2017-06, Vol.144 (12), p.2153-2164
Hauptverfasser: An, Yanru, Xue, Guosheng, Shaobo, Yang, Mingxi, Deng, Zhou, Xiaowei, Yu, Weichuan, Ishibashi, Toyotaka, Zhang, Lei, Yan, Yan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2164
container_issue 12
container_start_page 2153
container_title Development (Cambridge)
container_volume 144
creator An, Yanru
Xue, Guosheng
Shaobo, Yang
Mingxi, Deng
Zhou, Xiaowei
Yu, Weichuan
Ishibashi, Toyotaka
Zhang, Lei
Yan, Yan
description Cell delamination is a conserved morphogenetic process important for the generation of cell diversity and maintenance of tissue homeostasis. Here, we used embryonic neuroblasts as a model to study the apical constriction process during cell delamination. We observe dynamic myosin signals both around the cell adherens junctions and underneath the cell apical surface in the neuroectoderm. On the cell apical cortex, the nonjunctional myosin forms flows and pulses, which are termed medial myosin pulses. Quantitative differences in medial myosin pulse intensity and frequency are crucial to distinguish delaminating neuroblasts from their neighbors. Inhibition of medial myosin pulses blocks delamination. The fate of a neuroblast is set apart from that of its neighbors by Notch signaling-mediated lateral inhibition. When we inhibit Notch signaling activity in the embryo, we observe that small clusters of cells undergo apical constriction and display an abnormal apical myosin pattern. Together, these results demonstrate that a contractile actomyosin network across the apical cell surface is organized to drive apical constriction in delaminating neuroblasts.
doi_str_mv 10.1242/dev.150763
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1899404463</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1983417463</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-ab2da710aba3a3610e3799731117a0d9e345e731c567965e2136bdb3b4127b683</originalsourceid><addsrcrecordid>eNpd0ctKxTAQBuAgih4vGx9AAm5E6DHTpEmzFO9wwI2uS9JGjaZJTVrlvL2RqgtXmcDHMDM_QodAllCy8qwzH0uoiOB0Ay2ACVFIKOUmWhBZkQKkhB20m9IrIYRyIbbRTllXhEtZLZA9H2yrHG6DT2O07WiDxzbhLtoP47FeY4WHySU1WmewmnG_Dsl67M34GeIbzmVnnOqtz8o_48sYUhherFOZTDFop9KY9tHWk3LJHPy8e-jx-urh4rZY3d_cXZyvipbVYiyULjslgCitqKIciKFCSkEBQCjSSUNZZfK3rbiQvDIlUK47TTWDUmhe0z10MvcdYnifTBqb3qbWOKe8CVNqoJaSEcY4zfT4H30NU_R5ugZkTRmIWZ3Oqs17pWiemiHaXsV1A6T5DqDJATRzABkf_bScdG-6P_p7cfoFpNSBIQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1983417463</pqid></control><display><type>article</type><title>Apical constriction is driven by a pulsatile apical myosin network in delaminating Drosophila neuroblasts</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><source>Company of Biologists</source><creator>An, Yanru ; Xue, Guosheng ; Shaobo, Yang ; Mingxi, Deng ; Zhou, Xiaowei ; Yu, Weichuan ; Ishibashi, Toyotaka ; Zhang, Lei ; Yan, Yan</creator><creatorcontrib>An, Yanru ; Xue, Guosheng ; Shaobo, Yang ; Mingxi, Deng ; Zhou, Xiaowei ; Yu, Weichuan ; Ishibashi, Toyotaka ; Zhang, Lei ; Yan, Yan</creatorcontrib><description>Cell delamination is a conserved morphogenetic process important for the generation of cell diversity and maintenance of tissue homeostasis. Here, we used embryonic neuroblasts as a model to study the apical constriction process during cell delamination. We observe dynamic myosin signals both around the cell adherens junctions and underneath the cell apical surface in the neuroectoderm. On the cell apical cortex, the nonjunctional myosin forms flows and pulses, which are termed medial myosin pulses. Quantitative differences in medial myosin pulse intensity and frequency are crucial to distinguish delaminating neuroblasts from their neighbors. Inhibition of medial myosin pulses blocks delamination. The fate of a neuroblast is set apart from that of its neighbors by Notch signaling-mediated lateral inhibition. When we inhibit Notch signaling activity in the embryo, we observe that small clusters of cells undergo apical constriction and display an abnormal apical myosin pattern. Together, these results demonstrate that a contractile actomyosin network across the apical cell surface is organized to drive apical constriction in delaminating neuroblasts.</description><identifier>ISSN: 0950-1991</identifier><identifier>EISSN: 1477-9129</identifier><identifier>DOI: 10.1242/dev.150763</identifier><identifier>PMID: 28506995</identifier><language>eng</language><publisher>England: The Company of Biologists Ltd</publisher><subject>Actomyosin ; Adherens junctions ; Animals ; Animals, Genetically Modified ; Apoptosis ; Cell Differentiation ; Cell surface ; Contractility ; Drosophila ; Drosophila melanogaster - cytology ; Drosophila melanogaster - embryology ; Drosophila melanogaster - metabolism ; Drosophila Proteins - metabolism ; Embryos ; Homeostasis ; Insects ; Models, Neurological ; Morphogenesis - physiology ; Myosin ; Myosins - metabolism ; Neural Stem Cells - cytology ; Neural Stem Cells - metabolism ; Neuroblasts ; Neuroectoderm ; Neurogenesis - physiology ; Notch protein ; Receptors, Notch - metabolism ; Signal Transduction</subject><ispartof>Development (Cambridge), 2017-06, Vol.144 (12), p.2153-2164</ispartof><rights>2017. Published by The Company of Biologists Ltd.</rights><rights>Copyright The Company of Biologists Ltd Jun 15, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-ab2da710aba3a3610e3799731117a0d9e345e731c567965e2136bdb3b4127b683</citedby><cites>FETCH-LOGICAL-c487t-ab2da710aba3a3610e3799731117a0d9e345e731c567965e2136bdb3b4127b683</cites><orcidid>0000-0002-3677-5006</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3665,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28506995$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>An, Yanru</creatorcontrib><creatorcontrib>Xue, Guosheng</creatorcontrib><creatorcontrib>Shaobo, Yang</creatorcontrib><creatorcontrib>Mingxi, Deng</creatorcontrib><creatorcontrib>Zhou, Xiaowei</creatorcontrib><creatorcontrib>Yu, Weichuan</creatorcontrib><creatorcontrib>Ishibashi, Toyotaka</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Yan, Yan</creatorcontrib><title>Apical constriction is driven by a pulsatile apical myosin network in delaminating Drosophila neuroblasts</title><title>Development (Cambridge)</title><addtitle>Development</addtitle><description>Cell delamination is a conserved morphogenetic process important for the generation of cell diversity and maintenance of tissue homeostasis. Here, we used embryonic neuroblasts as a model to study the apical constriction process during cell delamination. We observe dynamic myosin signals both around the cell adherens junctions and underneath the cell apical surface in the neuroectoderm. On the cell apical cortex, the nonjunctional myosin forms flows and pulses, which are termed medial myosin pulses. Quantitative differences in medial myosin pulse intensity and frequency are crucial to distinguish delaminating neuroblasts from their neighbors. Inhibition of medial myosin pulses blocks delamination. The fate of a neuroblast is set apart from that of its neighbors by Notch signaling-mediated lateral inhibition. When we inhibit Notch signaling activity in the embryo, we observe that small clusters of cells undergo apical constriction and display an abnormal apical myosin pattern. Together, these results demonstrate that a contractile actomyosin network across the apical cell surface is organized to drive apical constriction in delaminating neuroblasts.</description><subject>Actomyosin</subject><subject>Adherens junctions</subject><subject>Animals</subject><subject>Animals, Genetically Modified</subject><subject>Apoptosis</subject><subject>Cell Differentiation</subject><subject>Cell surface</subject><subject>Contractility</subject><subject>Drosophila</subject><subject>Drosophila melanogaster - cytology</subject><subject>Drosophila melanogaster - embryology</subject><subject>Drosophila melanogaster - metabolism</subject><subject>Drosophila Proteins - metabolism</subject><subject>Embryos</subject><subject>Homeostasis</subject><subject>Insects</subject><subject>Models, Neurological</subject><subject>Morphogenesis - physiology</subject><subject>Myosin</subject><subject>Myosins - metabolism</subject><subject>Neural Stem Cells - cytology</subject><subject>Neural Stem Cells - metabolism</subject><subject>Neuroblasts</subject><subject>Neuroectoderm</subject><subject>Neurogenesis - physiology</subject><subject>Notch protein</subject><subject>Receptors, Notch - metabolism</subject><subject>Signal Transduction</subject><issn>0950-1991</issn><issn>1477-9129</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpd0ctKxTAQBuAgih4vGx9AAm5E6DHTpEmzFO9wwI2uS9JGjaZJTVrlvL2RqgtXmcDHMDM_QodAllCy8qwzH0uoiOB0Ay2ACVFIKOUmWhBZkQKkhB20m9IrIYRyIbbRTllXhEtZLZA9H2yrHG6DT2O07WiDxzbhLtoP47FeY4WHySU1WmewmnG_Dsl67M34GeIbzmVnnOqtz8o_48sYUhherFOZTDFop9KY9tHWk3LJHPy8e-jx-urh4rZY3d_cXZyvipbVYiyULjslgCitqKIciKFCSkEBQCjSSUNZZfK3rbiQvDIlUK47TTWDUmhe0z10MvcdYnifTBqb3qbWOKe8CVNqoJaSEcY4zfT4H30NU_R5ugZkTRmIWZ3Oqs17pWiemiHaXsV1A6T5DqDJATRzABkf_bScdG-6P_p7cfoFpNSBIQ</recordid><startdate>20170615</startdate><enddate>20170615</enddate><creator>An, Yanru</creator><creator>Xue, Guosheng</creator><creator>Shaobo, Yang</creator><creator>Mingxi, Deng</creator><creator>Zhou, Xiaowei</creator><creator>Yu, Weichuan</creator><creator>Ishibashi, Toyotaka</creator><creator>Zhang, Lei</creator><creator>Yan, Yan</creator><general>The Company of Biologists Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3677-5006</orcidid></search><sort><creationdate>20170615</creationdate><title>Apical constriction is driven by a pulsatile apical myosin network in delaminating Drosophila neuroblasts</title><author>An, Yanru ; Xue, Guosheng ; Shaobo, Yang ; Mingxi, Deng ; Zhou, Xiaowei ; Yu, Weichuan ; Ishibashi, Toyotaka ; Zhang, Lei ; Yan, Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-ab2da710aba3a3610e3799731117a0d9e345e731c567965e2136bdb3b4127b683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Actomyosin</topic><topic>Adherens junctions</topic><topic>Animals</topic><topic>Animals, Genetically Modified</topic><topic>Apoptosis</topic><topic>Cell Differentiation</topic><topic>Cell surface</topic><topic>Contractility</topic><topic>Drosophila</topic><topic>Drosophila melanogaster - cytology</topic><topic>Drosophila melanogaster - embryology</topic><topic>Drosophila melanogaster - metabolism</topic><topic>Drosophila Proteins - metabolism</topic><topic>Embryos</topic><topic>Homeostasis</topic><topic>Insects</topic><topic>Models, Neurological</topic><topic>Morphogenesis - physiology</topic><topic>Myosin</topic><topic>Myosins - metabolism</topic><topic>Neural Stem Cells - cytology</topic><topic>Neural Stem Cells - metabolism</topic><topic>Neuroblasts</topic><topic>Neuroectoderm</topic><topic>Neurogenesis - physiology</topic><topic>Notch protein</topic><topic>Receptors, Notch - metabolism</topic><topic>Signal Transduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>An, Yanru</creatorcontrib><creatorcontrib>Xue, Guosheng</creatorcontrib><creatorcontrib>Shaobo, Yang</creatorcontrib><creatorcontrib>Mingxi, Deng</creatorcontrib><creatorcontrib>Zhou, Xiaowei</creatorcontrib><creatorcontrib>Yu, Weichuan</creatorcontrib><creatorcontrib>Ishibashi, Toyotaka</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Yan, Yan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Development (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>An, Yanru</au><au>Xue, Guosheng</au><au>Shaobo, Yang</au><au>Mingxi, Deng</au><au>Zhou, Xiaowei</au><au>Yu, Weichuan</au><au>Ishibashi, Toyotaka</au><au>Zhang, Lei</au><au>Yan, Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Apical constriction is driven by a pulsatile apical myosin network in delaminating Drosophila neuroblasts</atitle><jtitle>Development (Cambridge)</jtitle><addtitle>Development</addtitle><date>2017-06-15</date><risdate>2017</risdate><volume>144</volume><issue>12</issue><spage>2153</spage><epage>2164</epage><pages>2153-2164</pages><issn>0950-1991</issn><eissn>1477-9129</eissn><abstract>Cell delamination is a conserved morphogenetic process important for the generation of cell diversity and maintenance of tissue homeostasis. Here, we used embryonic neuroblasts as a model to study the apical constriction process during cell delamination. We observe dynamic myosin signals both around the cell adherens junctions and underneath the cell apical surface in the neuroectoderm. On the cell apical cortex, the nonjunctional myosin forms flows and pulses, which are termed medial myosin pulses. Quantitative differences in medial myosin pulse intensity and frequency are crucial to distinguish delaminating neuroblasts from their neighbors. Inhibition of medial myosin pulses blocks delamination. The fate of a neuroblast is set apart from that of its neighbors by Notch signaling-mediated lateral inhibition. When we inhibit Notch signaling activity in the embryo, we observe that small clusters of cells undergo apical constriction and display an abnormal apical myosin pattern. Together, these results demonstrate that a contractile actomyosin network across the apical cell surface is organized to drive apical constriction in delaminating neuroblasts.</abstract><cop>England</cop><pub>The Company of Biologists Ltd</pub><pmid>28506995</pmid><doi>10.1242/dev.150763</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3677-5006</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-1991
ispartof Development (Cambridge), 2017-06, Vol.144 (12), p.2153-2164
issn 0950-1991
1477-9129
language eng
recordid cdi_proquest_miscellaneous_1899404463
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection; Company of Biologists
subjects Actomyosin
Adherens junctions
Animals
Animals, Genetically Modified
Apoptosis
Cell Differentiation
Cell surface
Contractility
Drosophila
Drosophila melanogaster - cytology
Drosophila melanogaster - embryology
Drosophila melanogaster - metabolism
Drosophila Proteins - metabolism
Embryos
Homeostasis
Insects
Models, Neurological
Morphogenesis - physiology
Myosin
Myosins - metabolism
Neural Stem Cells - cytology
Neural Stem Cells - metabolism
Neuroblasts
Neuroectoderm
Neurogenesis - physiology
Notch protein
Receptors, Notch - metabolism
Signal Transduction
title Apical constriction is driven by a pulsatile apical myosin network in delaminating Drosophila neuroblasts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A31%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Apical%20constriction%20is%20driven%20by%20a%20pulsatile%20apical%20myosin%20network%20in%20delaminating%20Drosophila%20neuroblasts&rft.jtitle=Development%20(Cambridge)&rft.au=An,%20Yanru&rft.date=2017-06-15&rft.volume=144&rft.issue=12&rft.spage=2153&rft.epage=2164&rft.pages=2153-2164&rft.issn=0950-1991&rft.eissn=1477-9129&rft_id=info:doi/10.1242/dev.150763&rft_dat=%3Cproquest_cross%3E1983417463%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1983417463&rft_id=info:pmid/28506995&rfr_iscdi=true