Apical constriction is driven by a pulsatile apical myosin network in delaminating Drosophila neuroblasts
Cell delamination is a conserved morphogenetic process important for the generation of cell diversity and maintenance of tissue homeostasis. Here, we used embryonic neuroblasts as a model to study the apical constriction process during cell delamination. We observe dynamic myosin signals both around...
Gespeichert in:
Veröffentlicht in: | Development (Cambridge) 2017-06, Vol.144 (12), p.2153-2164 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2164 |
---|---|
container_issue | 12 |
container_start_page | 2153 |
container_title | Development (Cambridge) |
container_volume | 144 |
creator | An, Yanru Xue, Guosheng Shaobo, Yang Mingxi, Deng Zhou, Xiaowei Yu, Weichuan Ishibashi, Toyotaka Zhang, Lei Yan, Yan |
description | Cell delamination is a conserved morphogenetic process important for the generation of cell diversity and maintenance of tissue homeostasis. Here, we used
embryonic neuroblasts as a model to study the apical constriction process during cell delamination. We observe dynamic myosin signals both around the cell adherens junctions and underneath the cell apical surface in the neuroectoderm. On the cell apical cortex, the nonjunctional myosin forms flows and pulses, which are termed medial myosin pulses. Quantitative differences in medial myosin pulse intensity and frequency are crucial to distinguish delaminating neuroblasts from their neighbors. Inhibition of medial myosin pulses blocks delamination. The fate of a neuroblast is set apart from that of its neighbors by Notch signaling-mediated lateral inhibition. When we inhibit Notch signaling activity in the embryo, we observe that small clusters of cells undergo apical constriction and display an abnormal apical myosin pattern. Together, these results demonstrate that a contractile actomyosin network across the apical cell surface is organized to drive apical constriction in delaminating neuroblasts. |
doi_str_mv | 10.1242/dev.150763 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1899404463</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1983417463</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-ab2da710aba3a3610e3799731117a0d9e345e731c567965e2136bdb3b4127b683</originalsourceid><addsrcrecordid>eNpd0ctKxTAQBuAgih4vGx9AAm5E6DHTpEmzFO9wwI2uS9JGjaZJTVrlvL2RqgtXmcDHMDM_QodAllCy8qwzH0uoiOB0Ay2ACVFIKOUmWhBZkQKkhB20m9IrIYRyIbbRTllXhEtZLZA9H2yrHG6DT2O07WiDxzbhLtoP47FeY4WHySU1WmewmnG_Dsl67M34GeIbzmVnnOqtz8o_48sYUhherFOZTDFop9KY9tHWk3LJHPy8e-jx-urh4rZY3d_cXZyvipbVYiyULjslgCitqKIciKFCSkEBQCjSSUNZZfK3rbiQvDIlUK47TTWDUmhe0z10MvcdYnifTBqb3qbWOKe8CVNqoJaSEcY4zfT4H30NU_R5ugZkTRmIWZ3Oqs17pWiemiHaXsV1A6T5DqDJATRzABkf_bScdG-6P_p7cfoFpNSBIQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1983417463</pqid></control><display><type>article</type><title>Apical constriction is driven by a pulsatile apical myosin network in delaminating Drosophila neuroblasts</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><source>Company of Biologists</source><creator>An, Yanru ; Xue, Guosheng ; Shaobo, Yang ; Mingxi, Deng ; Zhou, Xiaowei ; Yu, Weichuan ; Ishibashi, Toyotaka ; Zhang, Lei ; Yan, Yan</creator><creatorcontrib>An, Yanru ; Xue, Guosheng ; Shaobo, Yang ; Mingxi, Deng ; Zhou, Xiaowei ; Yu, Weichuan ; Ishibashi, Toyotaka ; Zhang, Lei ; Yan, Yan</creatorcontrib><description>Cell delamination is a conserved morphogenetic process important for the generation of cell diversity and maintenance of tissue homeostasis. Here, we used
embryonic neuroblasts as a model to study the apical constriction process during cell delamination. We observe dynamic myosin signals both around the cell adherens junctions and underneath the cell apical surface in the neuroectoderm. On the cell apical cortex, the nonjunctional myosin forms flows and pulses, which are termed medial myosin pulses. Quantitative differences in medial myosin pulse intensity and frequency are crucial to distinguish delaminating neuroblasts from their neighbors. Inhibition of medial myosin pulses blocks delamination. The fate of a neuroblast is set apart from that of its neighbors by Notch signaling-mediated lateral inhibition. When we inhibit Notch signaling activity in the embryo, we observe that small clusters of cells undergo apical constriction and display an abnormal apical myosin pattern. Together, these results demonstrate that a contractile actomyosin network across the apical cell surface is organized to drive apical constriction in delaminating neuroblasts.</description><identifier>ISSN: 0950-1991</identifier><identifier>EISSN: 1477-9129</identifier><identifier>DOI: 10.1242/dev.150763</identifier><identifier>PMID: 28506995</identifier><language>eng</language><publisher>England: The Company of Biologists Ltd</publisher><subject>Actomyosin ; Adherens junctions ; Animals ; Animals, Genetically Modified ; Apoptosis ; Cell Differentiation ; Cell surface ; Contractility ; Drosophila ; Drosophila melanogaster - cytology ; Drosophila melanogaster - embryology ; Drosophila melanogaster - metabolism ; Drosophila Proteins - metabolism ; Embryos ; Homeostasis ; Insects ; Models, Neurological ; Morphogenesis - physiology ; Myosin ; Myosins - metabolism ; Neural Stem Cells - cytology ; Neural Stem Cells - metabolism ; Neuroblasts ; Neuroectoderm ; Neurogenesis - physiology ; Notch protein ; Receptors, Notch - metabolism ; Signal Transduction</subject><ispartof>Development (Cambridge), 2017-06, Vol.144 (12), p.2153-2164</ispartof><rights>2017. Published by The Company of Biologists Ltd.</rights><rights>Copyright The Company of Biologists Ltd Jun 15, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-ab2da710aba3a3610e3799731117a0d9e345e731c567965e2136bdb3b4127b683</citedby><cites>FETCH-LOGICAL-c487t-ab2da710aba3a3610e3799731117a0d9e345e731c567965e2136bdb3b4127b683</cites><orcidid>0000-0002-3677-5006</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3665,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28506995$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>An, Yanru</creatorcontrib><creatorcontrib>Xue, Guosheng</creatorcontrib><creatorcontrib>Shaobo, Yang</creatorcontrib><creatorcontrib>Mingxi, Deng</creatorcontrib><creatorcontrib>Zhou, Xiaowei</creatorcontrib><creatorcontrib>Yu, Weichuan</creatorcontrib><creatorcontrib>Ishibashi, Toyotaka</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Yan, Yan</creatorcontrib><title>Apical constriction is driven by a pulsatile apical myosin network in delaminating Drosophila neuroblasts</title><title>Development (Cambridge)</title><addtitle>Development</addtitle><description>Cell delamination is a conserved morphogenetic process important for the generation of cell diversity and maintenance of tissue homeostasis. Here, we used
embryonic neuroblasts as a model to study the apical constriction process during cell delamination. We observe dynamic myosin signals both around the cell adherens junctions and underneath the cell apical surface in the neuroectoderm. On the cell apical cortex, the nonjunctional myosin forms flows and pulses, which are termed medial myosin pulses. Quantitative differences in medial myosin pulse intensity and frequency are crucial to distinguish delaminating neuroblasts from their neighbors. Inhibition of medial myosin pulses blocks delamination. The fate of a neuroblast is set apart from that of its neighbors by Notch signaling-mediated lateral inhibition. When we inhibit Notch signaling activity in the embryo, we observe that small clusters of cells undergo apical constriction and display an abnormal apical myosin pattern. Together, these results demonstrate that a contractile actomyosin network across the apical cell surface is organized to drive apical constriction in delaminating neuroblasts.</description><subject>Actomyosin</subject><subject>Adherens junctions</subject><subject>Animals</subject><subject>Animals, Genetically Modified</subject><subject>Apoptosis</subject><subject>Cell Differentiation</subject><subject>Cell surface</subject><subject>Contractility</subject><subject>Drosophila</subject><subject>Drosophila melanogaster - cytology</subject><subject>Drosophila melanogaster - embryology</subject><subject>Drosophila melanogaster - metabolism</subject><subject>Drosophila Proteins - metabolism</subject><subject>Embryos</subject><subject>Homeostasis</subject><subject>Insects</subject><subject>Models, Neurological</subject><subject>Morphogenesis - physiology</subject><subject>Myosin</subject><subject>Myosins - metabolism</subject><subject>Neural Stem Cells - cytology</subject><subject>Neural Stem Cells - metabolism</subject><subject>Neuroblasts</subject><subject>Neuroectoderm</subject><subject>Neurogenesis - physiology</subject><subject>Notch protein</subject><subject>Receptors, Notch - metabolism</subject><subject>Signal Transduction</subject><issn>0950-1991</issn><issn>1477-9129</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpd0ctKxTAQBuAgih4vGx9AAm5E6DHTpEmzFO9wwI2uS9JGjaZJTVrlvL2RqgtXmcDHMDM_QodAllCy8qwzH0uoiOB0Ay2ACVFIKOUmWhBZkQKkhB20m9IrIYRyIbbRTllXhEtZLZA9H2yrHG6DT2O07WiDxzbhLtoP47FeY4WHySU1WmewmnG_Dsl67M34GeIbzmVnnOqtz8o_48sYUhherFOZTDFop9KY9tHWk3LJHPy8e-jx-urh4rZY3d_cXZyvipbVYiyULjslgCitqKIciKFCSkEBQCjSSUNZZfK3rbiQvDIlUK47TTWDUmhe0z10MvcdYnifTBqb3qbWOKe8CVNqoJaSEcY4zfT4H30NU_R5ugZkTRmIWZ3Oqs17pWiemiHaXsV1A6T5DqDJATRzABkf_bScdG-6P_p7cfoFpNSBIQ</recordid><startdate>20170615</startdate><enddate>20170615</enddate><creator>An, Yanru</creator><creator>Xue, Guosheng</creator><creator>Shaobo, Yang</creator><creator>Mingxi, Deng</creator><creator>Zhou, Xiaowei</creator><creator>Yu, Weichuan</creator><creator>Ishibashi, Toyotaka</creator><creator>Zhang, Lei</creator><creator>Yan, Yan</creator><general>The Company of Biologists Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3677-5006</orcidid></search><sort><creationdate>20170615</creationdate><title>Apical constriction is driven by a pulsatile apical myosin network in delaminating Drosophila neuroblasts</title><author>An, Yanru ; Xue, Guosheng ; Shaobo, Yang ; Mingxi, Deng ; Zhou, Xiaowei ; Yu, Weichuan ; Ishibashi, Toyotaka ; Zhang, Lei ; Yan, Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-ab2da710aba3a3610e3799731117a0d9e345e731c567965e2136bdb3b4127b683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Actomyosin</topic><topic>Adherens junctions</topic><topic>Animals</topic><topic>Animals, Genetically Modified</topic><topic>Apoptosis</topic><topic>Cell Differentiation</topic><topic>Cell surface</topic><topic>Contractility</topic><topic>Drosophila</topic><topic>Drosophila melanogaster - cytology</topic><topic>Drosophila melanogaster - embryology</topic><topic>Drosophila melanogaster - metabolism</topic><topic>Drosophila Proteins - metabolism</topic><topic>Embryos</topic><topic>Homeostasis</topic><topic>Insects</topic><topic>Models, Neurological</topic><topic>Morphogenesis - physiology</topic><topic>Myosin</topic><topic>Myosins - metabolism</topic><topic>Neural Stem Cells - cytology</topic><topic>Neural Stem Cells - metabolism</topic><topic>Neuroblasts</topic><topic>Neuroectoderm</topic><topic>Neurogenesis - physiology</topic><topic>Notch protein</topic><topic>Receptors, Notch - metabolism</topic><topic>Signal Transduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>An, Yanru</creatorcontrib><creatorcontrib>Xue, Guosheng</creatorcontrib><creatorcontrib>Shaobo, Yang</creatorcontrib><creatorcontrib>Mingxi, Deng</creatorcontrib><creatorcontrib>Zhou, Xiaowei</creatorcontrib><creatorcontrib>Yu, Weichuan</creatorcontrib><creatorcontrib>Ishibashi, Toyotaka</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Yan, Yan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Development (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>An, Yanru</au><au>Xue, Guosheng</au><au>Shaobo, Yang</au><au>Mingxi, Deng</au><au>Zhou, Xiaowei</au><au>Yu, Weichuan</au><au>Ishibashi, Toyotaka</au><au>Zhang, Lei</au><au>Yan, Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Apical constriction is driven by a pulsatile apical myosin network in delaminating Drosophila neuroblasts</atitle><jtitle>Development (Cambridge)</jtitle><addtitle>Development</addtitle><date>2017-06-15</date><risdate>2017</risdate><volume>144</volume><issue>12</issue><spage>2153</spage><epage>2164</epage><pages>2153-2164</pages><issn>0950-1991</issn><eissn>1477-9129</eissn><abstract>Cell delamination is a conserved morphogenetic process important for the generation of cell diversity and maintenance of tissue homeostasis. Here, we used
embryonic neuroblasts as a model to study the apical constriction process during cell delamination. We observe dynamic myosin signals both around the cell adherens junctions and underneath the cell apical surface in the neuroectoderm. On the cell apical cortex, the nonjunctional myosin forms flows and pulses, which are termed medial myosin pulses. Quantitative differences in medial myosin pulse intensity and frequency are crucial to distinguish delaminating neuroblasts from their neighbors. Inhibition of medial myosin pulses blocks delamination. The fate of a neuroblast is set apart from that of its neighbors by Notch signaling-mediated lateral inhibition. When we inhibit Notch signaling activity in the embryo, we observe that small clusters of cells undergo apical constriction and display an abnormal apical myosin pattern. Together, these results demonstrate that a contractile actomyosin network across the apical cell surface is organized to drive apical constriction in delaminating neuroblasts.</abstract><cop>England</cop><pub>The Company of Biologists Ltd</pub><pmid>28506995</pmid><doi>10.1242/dev.150763</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3677-5006</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-1991 |
ispartof | Development (Cambridge), 2017-06, Vol.144 (12), p.2153-2164 |
issn | 0950-1991 1477-9129 |
language | eng |
recordid | cdi_proquest_miscellaneous_1899404463 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection; Company of Biologists |
subjects | Actomyosin Adherens junctions Animals Animals, Genetically Modified Apoptosis Cell Differentiation Cell surface Contractility Drosophila Drosophila melanogaster - cytology Drosophila melanogaster - embryology Drosophila melanogaster - metabolism Drosophila Proteins - metabolism Embryos Homeostasis Insects Models, Neurological Morphogenesis - physiology Myosin Myosins - metabolism Neural Stem Cells - cytology Neural Stem Cells - metabolism Neuroblasts Neuroectoderm Neurogenesis - physiology Notch protein Receptors, Notch - metabolism Signal Transduction |
title | Apical constriction is driven by a pulsatile apical myosin network in delaminating Drosophila neuroblasts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A31%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Apical%20constriction%20is%20driven%20by%20a%20pulsatile%20apical%20myosin%20network%20in%20delaminating%20Drosophila%20neuroblasts&rft.jtitle=Development%20(Cambridge)&rft.au=An,%20Yanru&rft.date=2017-06-15&rft.volume=144&rft.issue=12&rft.spage=2153&rft.epage=2164&rft.pages=2153-2164&rft.issn=0950-1991&rft.eissn=1477-9129&rft_id=info:doi/10.1242/dev.150763&rft_dat=%3Cproquest_cross%3E1983417463%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1983417463&rft_id=info:pmid/28506995&rfr_iscdi=true |