Rapid detoxification via glutathione S‐transferase (GST) conjugation confers a high level of atrazine resistance in Palmer amaranth (Amaranthus palmeri)

BACKGROUND Palmer amaranth (Amaranthus palmeri) is an economically troublesome, aggressive and damaging weed that has evolved resistance to six herbicide modes of action including photosystem II (PS II) inhibitors such as atrazine. The objective of this study was to investigate the mechanism and inh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pest management science 2017-11, Vol.73 (11), p.2236-2243
Hauptverfasser: Nakka, Sridevi, Godar, Amar S, Thompson, Curtis R, Peterson, Dallas E, Jugulam, Mithila
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2243
container_issue 11
container_start_page 2236
container_title Pest management science
container_volume 73
creator Nakka, Sridevi
Godar, Amar S
Thompson, Curtis R
Peterson, Dallas E
Jugulam, Mithila
description BACKGROUND Palmer amaranth (Amaranthus palmeri) is an economically troublesome, aggressive and damaging weed that has evolved resistance to six herbicide modes of action including photosystem II (PS II) inhibitors such as atrazine. The objective of this study was to investigate the mechanism and inheritance of atrazine resistance in Palmer amaranth. RESULTS A population of Palmer amaranth from Kansas (KSR) had a high level (160 − 198‐fold more; SE ±21 − 26) of resistance to atrazine compared to the two known susceptible populations MSS and KSS, from Mississippi and Kansas, respectively. Sequence analysis of the chloroplastic psbA gene did not reveal any known mutations conferring resistance to PS II inhibitors, including the most common Ser264Gly substitution for triazine resistance. However, the KSR plants rapidly conjugated atrazine at least 24 times faster than MSS via glutathione S‐transferase (GST) activity. Furthermore, genetic analyses of progeny generated from reciprocal crosses of KSR and MSS demonstrate that atrazine resistance in Palmer amaranth is a nuclear trait. CONCLUSION Although triazine resistance in Palmer amaranth was reported more than 20 years ago in the USA, this is the first report elucidating the underlying mechanism of resistance to atrazine. The non‐target‐site based metabolic resistance to atrazine mediated by GST activity may predispose the Palmer amaranth populations to have resistance to other herbicide families, and the nuclear inheritance of the trait in this dioecious species further exacerbates the propensity for its rapid spread. © 2017 Society of Chemical Industry
doi_str_mv 10.1002/ps.4615
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1899118882</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1899118882</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3455-5a8edc7fb319033724c4c407e3d664f59ab7cc0f38a661b67491602c10ac60d03</originalsourceid><addsrcrecordid>eNp1kd1KHDEUx4NU_MY3KIFeuCKrJ_ORSS5FWlsQKq6F3oWzmTO7WWZnxmRGq1d9hF738fokje7Wi4LkIiec3_lxwp-xQwGnAiA568JpJkW-wXZEnshxprV691qr79tsN4QFAGitky22nagcQCrYYb9vsHMlL6lvf7jKWexd2_B7h3xWDz328_gkPvnz81fvsQkVeQzER5eT22Nu22YxzFYTsY69wJHP3WzOa7qnmrcVxzj25KLCU3Chx8YSdw2_xnpJnuMSo7Wf89H5uhoC71567nifbVZYBzpY33vs26ePtxefx1dfL79cnF-NbZrl-ThHRaUtqmkqNKRpkWQ2HigoLaXMqlzjtLAWqlShlGIqi0wLCYkVgFZCCekeG628nW_vBgq9Wbpgqa6xoXYIRiithVBKJRH98B-6aAffxO2M0FlWSChUEamjFWV9G4KnynTexf89GgHmOS7TBfMcVyTfr33DdEnlK_cvnwicrIAHV9PjWx5zPXnR_QXzmJ-J</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1944760787</pqid></control><display><type>article</type><title>Rapid detoxification via glutathione S‐transferase (GST) conjugation confers a high level of atrazine resistance in Palmer amaranth (Amaranthus palmeri)</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Nakka, Sridevi ; Godar, Amar S ; Thompson, Curtis R ; Peterson, Dallas E ; Jugulam, Mithila</creator><creatorcontrib>Nakka, Sridevi ; Godar, Amar S ; Thompson, Curtis R ; Peterson, Dallas E ; Jugulam, Mithila</creatorcontrib><description>BACKGROUND Palmer amaranth (Amaranthus palmeri) is an economically troublesome, aggressive and damaging weed that has evolved resistance to six herbicide modes of action including photosystem II (PS II) inhibitors such as atrazine. The objective of this study was to investigate the mechanism and inheritance of atrazine resistance in Palmer amaranth. RESULTS A population of Palmer amaranth from Kansas (KSR) had a high level (160 − 198‐fold more; SE ±21 − 26) of resistance to atrazine compared to the two known susceptible populations MSS and KSS, from Mississippi and Kansas, respectively. Sequence analysis of the chloroplastic psbA gene did not reveal any known mutations conferring resistance to PS II inhibitors, including the most common Ser264Gly substitution for triazine resistance. However, the KSR plants rapidly conjugated atrazine at least 24 times faster than MSS via glutathione S‐transferase (GST) activity. Furthermore, genetic analyses of progeny generated from reciprocal crosses of KSR and MSS demonstrate that atrazine resistance in Palmer amaranth is a nuclear trait. CONCLUSION Although triazine resistance in Palmer amaranth was reported more than 20 years ago in the USA, this is the first report elucidating the underlying mechanism of resistance to atrazine. The non‐target‐site based metabolic resistance to atrazine mediated by GST activity may predispose the Palmer amaranth populations to have resistance to other herbicide families, and the nuclear inheritance of the trait in this dioecious species further exacerbates the propensity for its rapid spread. © 2017 Society of Chemical Industry</description><identifier>ISSN: 1526-498X</identifier><identifier>EISSN: 1526-4998</identifier><identifier>DOI: 10.1002/ps.4615</identifier><identifier>PMID: 28500680</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Amaranth ; Amaranthus - physiology ; Amaranthus palmeri ; Atrazine ; Atrazine - pharmacology ; Base Sequence ; Conjugation ; Damage ; Detoxification ; Evolution, Molecular ; Genetic crosses ; Glutathione ; glutathione S‐transferase (GST) ; Glutathione transferase ; Glutathione Transferase - metabolism ; Herbicide Resistance ; Herbicides ; Herbicides - pharmacology ; Heredity ; Inhibitors ; Kansas ; Levels ; Mutation ; non‐target‐site resistance ; Palmer amaranth ; Photosystem II ; photosystem II (PS II) inhibitors ; Plant Proteins - metabolism ; Populations ; Progeny ; PsbA gene ; target‐site resistance ; Triazine</subject><ispartof>Pest management science, 2017-11, Vol.73 (11), p.2236-2243</ispartof><rights>2017 Society of Chemical Industry</rights><rights>2017 Society of Chemical Industry.</rights><rights>Copyright © 2017 Society of Chemical Industry</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3455-5a8edc7fb319033724c4c407e3d664f59ab7cc0f38a661b67491602c10ac60d03</citedby><cites>FETCH-LOGICAL-c3455-5a8edc7fb319033724c4c407e3d664f59ab7cc0f38a661b67491602c10ac60d03</cites><orcidid>0000-0003-2065-9067</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fps.4615$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fps.4615$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28500680$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nakka, Sridevi</creatorcontrib><creatorcontrib>Godar, Amar S</creatorcontrib><creatorcontrib>Thompson, Curtis R</creatorcontrib><creatorcontrib>Peterson, Dallas E</creatorcontrib><creatorcontrib>Jugulam, Mithila</creatorcontrib><title>Rapid detoxification via glutathione S‐transferase (GST) conjugation confers a high level of atrazine resistance in Palmer amaranth (Amaranthus palmeri)</title><title>Pest management science</title><addtitle>Pest Manag Sci</addtitle><description>BACKGROUND Palmer amaranth (Amaranthus palmeri) is an economically troublesome, aggressive and damaging weed that has evolved resistance to six herbicide modes of action including photosystem II (PS II) inhibitors such as atrazine. The objective of this study was to investigate the mechanism and inheritance of atrazine resistance in Palmer amaranth. RESULTS A population of Palmer amaranth from Kansas (KSR) had a high level (160 − 198‐fold more; SE ±21 − 26) of resistance to atrazine compared to the two known susceptible populations MSS and KSS, from Mississippi and Kansas, respectively. Sequence analysis of the chloroplastic psbA gene did not reveal any known mutations conferring resistance to PS II inhibitors, including the most common Ser264Gly substitution for triazine resistance. However, the KSR plants rapidly conjugated atrazine at least 24 times faster than MSS via glutathione S‐transferase (GST) activity. Furthermore, genetic analyses of progeny generated from reciprocal crosses of KSR and MSS demonstrate that atrazine resistance in Palmer amaranth is a nuclear trait. CONCLUSION Although triazine resistance in Palmer amaranth was reported more than 20 years ago in the USA, this is the first report elucidating the underlying mechanism of resistance to atrazine. The non‐target‐site based metabolic resistance to atrazine mediated by GST activity may predispose the Palmer amaranth populations to have resistance to other herbicide families, and the nuclear inheritance of the trait in this dioecious species further exacerbates the propensity for its rapid spread. © 2017 Society of Chemical Industry</description><subject>Amaranth</subject><subject>Amaranthus - physiology</subject><subject>Amaranthus palmeri</subject><subject>Atrazine</subject><subject>Atrazine - pharmacology</subject><subject>Base Sequence</subject><subject>Conjugation</subject><subject>Damage</subject><subject>Detoxification</subject><subject>Evolution, Molecular</subject><subject>Genetic crosses</subject><subject>Glutathione</subject><subject>glutathione S‐transferase (GST)</subject><subject>Glutathione transferase</subject><subject>Glutathione Transferase - metabolism</subject><subject>Herbicide Resistance</subject><subject>Herbicides</subject><subject>Herbicides - pharmacology</subject><subject>Heredity</subject><subject>Inhibitors</subject><subject>Kansas</subject><subject>Levels</subject><subject>Mutation</subject><subject>non‐target‐site resistance</subject><subject>Palmer amaranth</subject><subject>Photosystem II</subject><subject>photosystem II (PS II) inhibitors</subject><subject>Plant Proteins - metabolism</subject><subject>Populations</subject><subject>Progeny</subject><subject>PsbA gene</subject><subject>target‐site resistance</subject><subject>Triazine</subject><issn>1526-498X</issn><issn>1526-4998</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kd1KHDEUx4NU_MY3KIFeuCKrJ_ORSS5FWlsQKq6F3oWzmTO7WWZnxmRGq1d9hF738fokje7Wi4LkIiec3_lxwp-xQwGnAiA568JpJkW-wXZEnshxprV691qr79tsN4QFAGitky22nagcQCrYYb9vsHMlL6lvf7jKWexd2_B7h3xWDz328_gkPvnz81fvsQkVeQzER5eT22Nu22YxzFYTsY69wJHP3WzOa7qnmrcVxzj25KLCU3Chx8YSdw2_xnpJnuMSo7Wf89H5uhoC71567nifbVZYBzpY33vs26ePtxefx1dfL79cnF-NbZrl-ThHRaUtqmkqNKRpkWQ2HigoLaXMqlzjtLAWqlShlGIqi0wLCYkVgFZCCekeG628nW_vBgq9Wbpgqa6xoXYIRiithVBKJRH98B-6aAffxO2M0FlWSChUEamjFWV9G4KnynTexf89GgHmOS7TBfMcVyTfr33DdEnlK_cvnwicrIAHV9PjWx5zPXnR_QXzmJ-J</recordid><startdate>201711</startdate><enddate>201711</enddate><creator>Nakka, Sridevi</creator><creator>Godar, Amar S</creator><creator>Thompson, Curtis R</creator><creator>Peterson, Dallas E</creator><creator>Jugulam, Mithila</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2065-9067</orcidid></search><sort><creationdate>201711</creationdate><title>Rapid detoxification via glutathione S‐transferase (GST) conjugation confers a high level of atrazine resistance in Palmer amaranth (Amaranthus palmeri)</title><author>Nakka, Sridevi ; Godar, Amar S ; Thompson, Curtis R ; Peterson, Dallas E ; Jugulam, Mithila</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3455-5a8edc7fb319033724c4c407e3d664f59ab7cc0f38a661b67491602c10ac60d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Amaranth</topic><topic>Amaranthus - physiology</topic><topic>Amaranthus palmeri</topic><topic>Atrazine</topic><topic>Atrazine - pharmacology</topic><topic>Base Sequence</topic><topic>Conjugation</topic><topic>Damage</topic><topic>Detoxification</topic><topic>Evolution, Molecular</topic><topic>Genetic crosses</topic><topic>Glutathione</topic><topic>glutathione S‐transferase (GST)</topic><topic>Glutathione transferase</topic><topic>Glutathione Transferase - metabolism</topic><topic>Herbicide Resistance</topic><topic>Herbicides</topic><topic>Herbicides - pharmacology</topic><topic>Heredity</topic><topic>Inhibitors</topic><topic>Kansas</topic><topic>Levels</topic><topic>Mutation</topic><topic>non‐target‐site resistance</topic><topic>Palmer amaranth</topic><topic>Photosystem II</topic><topic>photosystem II (PS II) inhibitors</topic><topic>Plant Proteins - metabolism</topic><topic>Populations</topic><topic>Progeny</topic><topic>PsbA gene</topic><topic>target‐site resistance</topic><topic>Triazine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nakka, Sridevi</creatorcontrib><creatorcontrib>Godar, Amar S</creatorcontrib><creatorcontrib>Thompson, Curtis R</creatorcontrib><creatorcontrib>Peterson, Dallas E</creatorcontrib><creatorcontrib>Jugulam, Mithila</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Pest management science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nakka, Sridevi</au><au>Godar, Amar S</au><au>Thompson, Curtis R</au><au>Peterson, Dallas E</au><au>Jugulam, Mithila</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapid detoxification via glutathione S‐transferase (GST) conjugation confers a high level of atrazine resistance in Palmer amaranth (Amaranthus palmeri)</atitle><jtitle>Pest management science</jtitle><addtitle>Pest Manag Sci</addtitle><date>2017-11</date><risdate>2017</risdate><volume>73</volume><issue>11</issue><spage>2236</spage><epage>2243</epage><pages>2236-2243</pages><issn>1526-498X</issn><eissn>1526-4998</eissn><abstract>BACKGROUND Palmer amaranth (Amaranthus palmeri) is an economically troublesome, aggressive and damaging weed that has evolved resistance to six herbicide modes of action including photosystem II (PS II) inhibitors such as atrazine. The objective of this study was to investigate the mechanism and inheritance of atrazine resistance in Palmer amaranth. RESULTS A population of Palmer amaranth from Kansas (KSR) had a high level (160 − 198‐fold more; SE ±21 − 26) of resistance to atrazine compared to the two known susceptible populations MSS and KSS, from Mississippi and Kansas, respectively. Sequence analysis of the chloroplastic psbA gene did not reveal any known mutations conferring resistance to PS II inhibitors, including the most common Ser264Gly substitution for triazine resistance. However, the KSR plants rapidly conjugated atrazine at least 24 times faster than MSS via glutathione S‐transferase (GST) activity. Furthermore, genetic analyses of progeny generated from reciprocal crosses of KSR and MSS demonstrate that atrazine resistance in Palmer amaranth is a nuclear trait. CONCLUSION Although triazine resistance in Palmer amaranth was reported more than 20 years ago in the USA, this is the first report elucidating the underlying mechanism of resistance to atrazine. The non‐target‐site based metabolic resistance to atrazine mediated by GST activity may predispose the Palmer amaranth populations to have resistance to other herbicide families, and the nuclear inheritance of the trait in this dioecious species further exacerbates the propensity for its rapid spread. © 2017 Society of Chemical Industry</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>28500680</pmid><doi>10.1002/ps.4615</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2065-9067</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1526-498X
ispartof Pest management science, 2017-11, Vol.73 (11), p.2236-2243
issn 1526-498X
1526-4998
language eng
recordid cdi_proquest_miscellaneous_1899118882
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Amaranth
Amaranthus - physiology
Amaranthus palmeri
Atrazine
Atrazine - pharmacology
Base Sequence
Conjugation
Damage
Detoxification
Evolution, Molecular
Genetic crosses
Glutathione
glutathione S‐transferase (GST)
Glutathione transferase
Glutathione Transferase - metabolism
Herbicide Resistance
Herbicides
Herbicides - pharmacology
Heredity
Inhibitors
Kansas
Levels
Mutation
non‐target‐site resistance
Palmer amaranth
Photosystem II
photosystem II (PS II) inhibitors
Plant Proteins - metabolism
Populations
Progeny
PsbA gene
target‐site resistance
Triazine
title Rapid detoxification via glutathione S‐transferase (GST) conjugation confers a high level of atrazine resistance in Palmer amaranth (Amaranthus palmeri)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A37%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapid%20detoxification%20via%20glutathione%20S%E2%80%90transferase%20(GST)%20conjugation%20confers%20a%20high%20level%20of%20atrazine%20resistance%20in%20Palmer%20amaranth%20(Amaranthus%20palmeri)&rft.jtitle=Pest%20management%20science&rft.au=Nakka,%20Sridevi&rft.date=2017-11&rft.volume=73&rft.issue=11&rft.spage=2236&rft.epage=2243&rft.pages=2236-2243&rft.issn=1526-498X&rft.eissn=1526-4998&rft_id=info:doi/10.1002/ps.4615&rft_dat=%3Cproquest_cross%3E1899118882%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1944760787&rft_id=info:pmid/28500680&rfr_iscdi=true