Rapid detoxification via glutathione S‐transferase (GST) conjugation confers a high level of atrazine resistance in Palmer amaranth (Amaranthus palmeri)
BACKGROUND Palmer amaranth (Amaranthus palmeri) is an economically troublesome, aggressive and damaging weed that has evolved resistance to six herbicide modes of action including photosystem II (PS II) inhibitors such as atrazine. The objective of this study was to investigate the mechanism and inh...
Gespeichert in:
Veröffentlicht in: | Pest management science 2017-11, Vol.73 (11), p.2236-2243 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2243 |
---|---|
container_issue | 11 |
container_start_page | 2236 |
container_title | Pest management science |
container_volume | 73 |
creator | Nakka, Sridevi Godar, Amar S Thompson, Curtis R Peterson, Dallas E Jugulam, Mithila |
description | BACKGROUND
Palmer amaranth (Amaranthus palmeri) is an economically troublesome, aggressive and damaging weed that has evolved resistance to six herbicide modes of action including photosystem II (PS II) inhibitors such as atrazine. The objective of this study was to investigate the mechanism and inheritance of atrazine resistance in Palmer amaranth.
RESULTS
A population of Palmer amaranth from Kansas (KSR) had a high level (160 − 198‐fold more; SE ±21 − 26) of resistance to atrazine compared to the two known susceptible populations MSS and KSS, from Mississippi and Kansas, respectively. Sequence analysis of the chloroplastic psbA gene did not reveal any known mutations conferring resistance to PS II inhibitors, including the most common Ser264Gly substitution for triazine resistance. However, the KSR plants rapidly conjugated atrazine at least 24 times faster than MSS via glutathione S‐transferase (GST) activity. Furthermore, genetic analyses of progeny generated from reciprocal crosses of KSR and MSS demonstrate that atrazine resistance in Palmer amaranth is a nuclear trait.
CONCLUSION
Although triazine resistance in Palmer amaranth was reported more than 20 years ago in the USA, this is the first report elucidating the underlying mechanism of resistance to atrazine. The non‐target‐site based metabolic resistance to atrazine mediated by GST activity may predispose the Palmer amaranth populations to have resistance to other herbicide families, and the nuclear inheritance of the trait in this dioecious species further exacerbates the propensity for its rapid spread. © 2017 Society of Chemical Industry |
doi_str_mv | 10.1002/ps.4615 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1899118882</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1899118882</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3455-5a8edc7fb319033724c4c407e3d664f59ab7cc0f38a661b67491602c10ac60d03</originalsourceid><addsrcrecordid>eNp1kd1KHDEUx4NU_MY3KIFeuCKrJ_ORSS5FWlsQKq6F3oWzmTO7WWZnxmRGq1d9hF738fokje7Wi4LkIiec3_lxwp-xQwGnAiA568JpJkW-wXZEnshxprV691qr79tsN4QFAGitky22nagcQCrYYb9vsHMlL6lvf7jKWexd2_B7h3xWDz328_gkPvnz81fvsQkVeQzER5eT22Nu22YxzFYTsY69wJHP3WzOa7qnmrcVxzj25KLCU3Chx8YSdw2_xnpJnuMSo7Wf89H5uhoC71567nifbVZYBzpY33vs26ePtxefx1dfL79cnF-NbZrl-ThHRaUtqmkqNKRpkWQ2HigoLaXMqlzjtLAWqlShlGIqi0wLCYkVgFZCCekeG628nW_vBgq9Wbpgqa6xoXYIRiithVBKJRH98B-6aAffxO2M0FlWSChUEamjFWV9G4KnynTexf89GgHmOS7TBfMcVyTfr33DdEnlK_cvnwicrIAHV9PjWx5zPXnR_QXzmJ-J</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1944760787</pqid></control><display><type>article</type><title>Rapid detoxification via glutathione S‐transferase (GST) conjugation confers a high level of atrazine resistance in Palmer amaranth (Amaranthus palmeri)</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Nakka, Sridevi ; Godar, Amar S ; Thompson, Curtis R ; Peterson, Dallas E ; Jugulam, Mithila</creator><creatorcontrib>Nakka, Sridevi ; Godar, Amar S ; Thompson, Curtis R ; Peterson, Dallas E ; Jugulam, Mithila</creatorcontrib><description>BACKGROUND
Palmer amaranth (Amaranthus palmeri) is an economically troublesome, aggressive and damaging weed that has evolved resistance to six herbicide modes of action including photosystem II (PS II) inhibitors such as atrazine. The objective of this study was to investigate the mechanism and inheritance of atrazine resistance in Palmer amaranth.
RESULTS
A population of Palmer amaranth from Kansas (KSR) had a high level (160 − 198‐fold more; SE ±21 − 26) of resistance to atrazine compared to the two known susceptible populations MSS and KSS, from Mississippi and Kansas, respectively. Sequence analysis of the chloroplastic psbA gene did not reveal any known mutations conferring resistance to PS II inhibitors, including the most common Ser264Gly substitution for triazine resistance. However, the KSR plants rapidly conjugated atrazine at least 24 times faster than MSS via glutathione S‐transferase (GST) activity. Furthermore, genetic analyses of progeny generated from reciprocal crosses of KSR and MSS demonstrate that atrazine resistance in Palmer amaranth is a nuclear trait.
CONCLUSION
Although triazine resistance in Palmer amaranth was reported more than 20 years ago in the USA, this is the first report elucidating the underlying mechanism of resistance to atrazine. The non‐target‐site based metabolic resistance to atrazine mediated by GST activity may predispose the Palmer amaranth populations to have resistance to other herbicide families, and the nuclear inheritance of the trait in this dioecious species further exacerbates the propensity for its rapid spread. © 2017 Society of Chemical Industry</description><identifier>ISSN: 1526-498X</identifier><identifier>EISSN: 1526-4998</identifier><identifier>DOI: 10.1002/ps.4615</identifier><identifier>PMID: 28500680</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Amaranth ; Amaranthus - physiology ; Amaranthus palmeri ; Atrazine ; Atrazine - pharmacology ; Base Sequence ; Conjugation ; Damage ; Detoxification ; Evolution, Molecular ; Genetic crosses ; Glutathione ; glutathione S‐transferase (GST) ; Glutathione transferase ; Glutathione Transferase - metabolism ; Herbicide Resistance ; Herbicides ; Herbicides - pharmacology ; Heredity ; Inhibitors ; Kansas ; Levels ; Mutation ; non‐target‐site resistance ; Palmer amaranth ; Photosystem II ; photosystem II (PS II) inhibitors ; Plant Proteins - metabolism ; Populations ; Progeny ; PsbA gene ; target‐site resistance ; Triazine</subject><ispartof>Pest management science, 2017-11, Vol.73 (11), p.2236-2243</ispartof><rights>2017 Society of Chemical Industry</rights><rights>2017 Society of Chemical Industry.</rights><rights>Copyright © 2017 Society of Chemical Industry</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3455-5a8edc7fb319033724c4c407e3d664f59ab7cc0f38a661b67491602c10ac60d03</citedby><cites>FETCH-LOGICAL-c3455-5a8edc7fb319033724c4c407e3d664f59ab7cc0f38a661b67491602c10ac60d03</cites><orcidid>0000-0003-2065-9067</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fps.4615$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fps.4615$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28500680$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nakka, Sridevi</creatorcontrib><creatorcontrib>Godar, Amar S</creatorcontrib><creatorcontrib>Thompson, Curtis R</creatorcontrib><creatorcontrib>Peterson, Dallas E</creatorcontrib><creatorcontrib>Jugulam, Mithila</creatorcontrib><title>Rapid detoxification via glutathione S‐transferase (GST) conjugation confers a high level of atrazine resistance in Palmer amaranth (Amaranthus palmeri)</title><title>Pest management science</title><addtitle>Pest Manag Sci</addtitle><description>BACKGROUND
Palmer amaranth (Amaranthus palmeri) is an economically troublesome, aggressive and damaging weed that has evolved resistance to six herbicide modes of action including photosystem II (PS II) inhibitors such as atrazine. The objective of this study was to investigate the mechanism and inheritance of atrazine resistance in Palmer amaranth.
RESULTS
A population of Palmer amaranth from Kansas (KSR) had a high level (160 − 198‐fold more; SE ±21 − 26) of resistance to atrazine compared to the two known susceptible populations MSS and KSS, from Mississippi and Kansas, respectively. Sequence analysis of the chloroplastic psbA gene did not reveal any known mutations conferring resistance to PS II inhibitors, including the most common Ser264Gly substitution for triazine resistance. However, the KSR plants rapidly conjugated atrazine at least 24 times faster than MSS via glutathione S‐transferase (GST) activity. Furthermore, genetic analyses of progeny generated from reciprocal crosses of KSR and MSS demonstrate that atrazine resistance in Palmer amaranth is a nuclear trait.
CONCLUSION
Although triazine resistance in Palmer amaranth was reported more than 20 years ago in the USA, this is the first report elucidating the underlying mechanism of resistance to atrazine. The non‐target‐site based metabolic resistance to atrazine mediated by GST activity may predispose the Palmer amaranth populations to have resistance to other herbicide families, and the nuclear inheritance of the trait in this dioecious species further exacerbates the propensity for its rapid spread. © 2017 Society of Chemical Industry</description><subject>Amaranth</subject><subject>Amaranthus - physiology</subject><subject>Amaranthus palmeri</subject><subject>Atrazine</subject><subject>Atrazine - pharmacology</subject><subject>Base Sequence</subject><subject>Conjugation</subject><subject>Damage</subject><subject>Detoxification</subject><subject>Evolution, Molecular</subject><subject>Genetic crosses</subject><subject>Glutathione</subject><subject>glutathione S‐transferase (GST)</subject><subject>Glutathione transferase</subject><subject>Glutathione Transferase - metabolism</subject><subject>Herbicide Resistance</subject><subject>Herbicides</subject><subject>Herbicides - pharmacology</subject><subject>Heredity</subject><subject>Inhibitors</subject><subject>Kansas</subject><subject>Levels</subject><subject>Mutation</subject><subject>non‐target‐site resistance</subject><subject>Palmer amaranth</subject><subject>Photosystem II</subject><subject>photosystem II (PS II) inhibitors</subject><subject>Plant Proteins - metabolism</subject><subject>Populations</subject><subject>Progeny</subject><subject>PsbA gene</subject><subject>target‐site resistance</subject><subject>Triazine</subject><issn>1526-498X</issn><issn>1526-4998</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kd1KHDEUx4NU_MY3KIFeuCKrJ_ORSS5FWlsQKq6F3oWzmTO7WWZnxmRGq1d9hF738fokje7Wi4LkIiec3_lxwp-xQwGnAiA568JpJkW-wXZEnshxprV691qr79tsN4QFAGitky22nagcQCrYYb9vsHMlL6lvf7jKWexd2_B7h3xWDz328_gkPvnz81fvsQkVeQzER5eT22Nu22YxzFYTsY69wJHP3WzOa7qnmrcVxzj25KLCU3Chx8YSdw2_xnpJnuMSo7Wf89H5uhoC71567nifbVZYBzpY33vs26ePtxefx1dfL79cnF-NbZrl-ThHRaUtqmkqNKRpkWQ2HigoLaXMqlzjtLAWqlShlGIqi0wLCYkVgFZCCekeG628nW_vBgq9Wbpgqa6xoXYIRiithVBKJRH98B-6aAffxO2M0FlWSChUEamjFWV9G4KnynTexf89GgHmOS7TBfMcVyTfr33DdEnlK_cvnwicrIAHV9PjWx5zPXnR_QXzmJ-J</recordid><startdate>201711</startdate><enddate>201711</enddate><creator>Nakka, Sridevi</creator><creator>Godar, Amar S</creator><creator>Thompson, Curtis R</creator><creator>Peterson, Dallas E</creator><creator>Jugulam, Mithila</creator><general>John Wiley & Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2065-9067</orcidid></search><sort><creationdate>201711</creationdate><title>Rapid detoxification via glutathione S‐transferase (GST) conjugation confers a high level of atrazine resistance in Palmer amaranth (Amaranthus palmeri)</title><author>Nakka, Sridevi ; Godar, Amar S ; Thompson, Curtis R ; Peterson, Dallas E ; Jugulam, Mithila</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3455-5a8edc7fb319033724c4c407e3d664f59ab7cc0f38a661b67491602c10ac60d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Amaranth</topic><topic>Amaranthus - physiology</topic><topic>Amaranthus palmeri</topic><topic>Atrazine</topic><topic>Atrazine - pharmacology</topic><topic>Base Sequence</topic><topic>Conjugation</topic><topic>Damage</topic><topic>Detoxification</topic><topic>Evolution, Molecular</topic><topic>Genetic crosses</topic><topic>Glutathione</topic><topic>glutathione S‐transferase (GST)</topic><topic>Glutathione transferase</topic><topic>Glutathione Transferase - metabolism</topic><topic>Herbicide Resistance</topic><topic>Herbicides</topic><topic>Herbicides - pharmacology</topic><topic>Heredity</topic><topic>Inhibitors</topic><topic>Kansas</topic><topic>Levels</topic><topic>Mutation</topic><topic>non‐target‐site resistance</topic><topic>Palmer amaranth</topic><topic>Photosystem II</topic><topic>photosystem II (PS II) inhibitors</topic><topic>Plant Proteins - metabolism</topic><topic>Populations</topic><topic>Progeny</topic><topic>PsbA gene</topic><topic>target‐site resistance</topic><topic>Triazine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nakka, Sridevi</creatorcontrib><creatorcontrib>Godar, Amar S</creatorcontrib><creatorcontrib>Thompson, Curtis R</creatorcontrib><creatorcontrib>Peterson, Dallas E</creatorcontrib><creatorcontrib>Jugulam, Mithila</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Pest management science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nakka, Sridevi</au><au>Godar, Amar S</au><au>Thompson, Curtis R</au><au>Peterson, Dallas E</au><au>Jugulam, Mithila</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapid detoxification via glutathione S‐transferase (GST) conjugation confers a high level of atrazine resistance in Palmer amaranth (Amaranthus palmeri)</atitle><jtitle>Pest management science</jtitle><addtitle>Pest Manag Sci</addtitle><date>2017-11</date><risdate>2017</risdate><volume>73</volume><issue>11</issue><spage>2236</spage><epage>2243</epage><pages>2236-2243</pages><issn>1526-498X</issn><eissn>1526-4998</eissn><abstract>BACKGROUND
Palmer amaranth (Amaranthus palmeri) is an economically troublesome, aggressive and damaging weed that has evolved resistance to six herbicide modes of action including photosystem II (PS II) inhibitors such as atrazine. The objective of this study was to investigate the mechanism and inheritance of atrazine resistance in Palmer amaranth.
RESULTS
A population of Palmer amaranth from Kansas (KSR) had a high level (160 − 198‐fold more; SE ±21 − 26) of resistance to atrazine compared to the two known susceptible populations MSS and KSS, from Mississippi and Kansas, respectively. Sequence analysis of the chloroplastic psbA gene did not reveal any known mutations conferring resistance to PS II inhibitors, including the most common Ser264Gly substitution for triazine resistance. However, the KSR plants rapidly conjugated atrazine at least 24 times faster than MSS via glutathione S‐transferase (GST) activity. Furthermore, genetic analyses of progeny generated from reciprocal crosses of KSR and MSS demonstrate that atrazine resistance in Palmer amaranth is a nuclear trait.
CONCLUSION
Although triazine resistance in Palmer amaranth was reported more than 20 years ago in the USA, this is the first report elucidating the underlying mechanism of resistance to atrazine. The non‐target‐site based metabolic resistance to atrazine mediated by GST activity may predispose the Palmer amaranth populations to have resistance to other herbicide families, and the nuclear inheritance of the trait in this dioecious species further exacerbates the propensity for its rapid spread. © 2017 Society of Chemical Industry</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>28500680</pmid><doi>10.1002/ps.4615</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2065-9067</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1526-498X |
ispartof | Pest management science, 2017-11, Vol.73 (11), p.2236-2243 |
issn | 1526-498X 1526-4998 |
language | eng |
recordid | cdi_proquest_miscellaneous_1899118882 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Amaranth Amaranthus - physiology Amaranthus palmeri Atrazine Atrazine - pharmacology Base Sequence Conjugation Damage Detoxification Evolution, Molecular Genetic crosses Glutathione glutathione S‐transferase (GST) Glutathione transferase Glutathione Transferase - metabolism Herbicide Resistance Herbicides Herbicides - pharmacology Heredity Inhibitors Kansas Levels Mutation non‐target‐site resistance Palmer amaranth Photosystem II photosystem II (PS II) inhibitors Plant Proteins - metabolism Populations Progeny PsbA gene target‐site resistance Triazine |
title | Rapid detoxification via glutathione S‐transferase (GST) conjugation confers a high level of atrazine resistance in Palmer amaranth (Amaranthus palmeri) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A37%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapid%20detoxification%20via%20glutathione%20S%E2%80%90transferase%20(GST)%20conjugation%20confers%20a%20high%20level%20of%20atrazine%20resistance%20in%20Palmer%20amaranth%20(Amaranthus%20palmeri)&rft.jtitle=Pest%20management%20science&rft.au=Nakka,%20Sridevi&rft.date=2017-11&rft.volume=73&rft.issue=11&rft.spage=2236&rft.epage=2243&rft.pages=2236-2243&rft.issn=1526-498X&rft.eissn=1526-4998&rft_id=info:doi/10.1002/ps.4615&rft_dat=%3Cproquest_cross%3E1899118882%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1944760787&rft_id=info:pmid/28500680&rfr_iscdi=true |