How Hot are Your Ions Really? A Threshold Collision-Induced Dissociation Study of Substituted Benzylpyridinium “Thermometer” Ions
The first absolute experimental bond dissociation energies (BDEs) for the main heterolytic bond cleavages of four benzylpyridinium “thermometer” ions are measured using threshold collision-induced dissociation in a guided ion beam tandem mass spectrometer. In this experiment, substituted benzylpyrid...
Gespeichert in:
Veröffentlicht in: | Journal of the American Society for Mass Spectrometry 2017-09, Vol.28 (9), p.1876-1888 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The first absolute experimental bond dissociation energies (BDEs) for the main heterolytic bond cleavages of four benzylpyridinium “thermometer” ions are measured using threshold collision-induced dissociation in a guided ion beam tandem mass spectrometer. In this experiment, substituted benzylpyridinium ions are introduced into the apparatus using an electrospray ionization source, thermalized, and collided with Xe at varied kinetic energies to determine absolute cross-sections for these reactions. Various effects are accounted for, including kinetic shifts, multiple collisions, and internal and kinetic energy distributions. These experimentally measured 0 K BDEs are compared with computationally predicted values at the B3LYP-GD3BJ, M06-GD3, and MP2(full) levels of theory with a 6-311+G(2d,2p) basis set using vibrational frequencies and geometries determined at the B3LYP/6-311+G(d,p) level. Additional dissociation pathways are observed for nitrobenzylpyridinium experimentally and investigated using these same levels of theory. Experimental BDEs are also compared against values in the literature at the AM1, HF, B3LYP, B3P86, and CCSD(T) levels of theory. Of the calculated values obtained in this work, the MP2(full) level of theory with counterpoise corrections best reproduces the experimental results, as do the similar literature CCSD(T) values. Lastly, the survival yield method is used to determine the characteristic temperature (T
char
) of the electrospray source prior to the thermalization region and to confirm efficient thermalization.
Graphical Abstract
ᅟ |
---|---|
ISSN: | 1044-0305 1879-1123 |
DOI: | 10.1007/s13361-017-1693-0 |