Excitation Energies of Canonical Nucleobases Computed by Multiconfigurational Perturbation Theories
In this computational work, we assessed the performance of ab initio multireference (MR) methods for the calculation of vertical excitation energies of five nucleobases: adenine, guanine, cytosine, thymine and uracil. In total, we have studied 38 singlet and 30 triplet excited states. Where possible...
Gespeichert in:
Veröffentlicht in: | Photochemistry and photobiology 2017-05, Vol.93 (3), p.888-902 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 902 |
---|---|
container_issue | 3 |
container_start_page | 888 |
container_title | Photochemistry and photobiology |
container_volume | 93 |
creator | Wiebeler, Christian Borin, Veniamin Sanchez de Araújo, Adalberto Vasconcelos Schapiro, Igor Borin, Antonio Carlos |
description | In this computational work, we assessed the performance of ab initio multireference (MR) methods for the calculation of vertical excitation energies of five nucleobases: adenine, guanine, cytosine, thymine and uracil. In total, we have studied 38 singlet and 30 triplet excited states. Where possible we used the multireference configuration interaction (MRCI) method as a reference for various flavors of multireference perturbation theory to second order. In particular, we have benchmarked CASPT2, NEVPT2 and XMCQDPT2. For CASPT2, we have analyzed the single‐state, multistate (MS) and extended MS variants. In addition, we have assessed the effect of the ionization potential electron affinity (IPEA) shift. For NEVPT2, we have used the partially and the strongly contracted variants. Further, we have tested the commonly used RI‐CC2, RI‐ADC2 and EOM‐CCSD methods. Generally, we observe the following trends for singlet excited states: NEVPT2 is the closest MR method to MRCISD+Q, closely followed by CASPT2 with the default IPEA shift. The same trend is observed for triplet states, although NEVPT2 and CASPT2‐IPEA are getting closer. Interestingly, the n, π* singlet excited states were described more accurately than π, π* excited states, while for triplet states the trend is inverted except for NEVPT2. This work is an important benchmark for future photochemical investigations.
The photochemistry of nucleobases (NBs) is of paramount importance because they are building blocks of DNA and RNA that store genetic information. In this computational work we assess the performance of accurate ab initio multireference quantum chemical methods for the calculation of the vertical excitation energies of five NBs: adenine, guanine, cytosine, thymine and uracil. In total we have studied 38 singlet and 30 triplet excited states. |
doi_str_mv | 10.1111/php.12765 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1899117395</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1899117395</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3885-7ee7d3730b1bc8d5585f701ef69a21bdaece876e6a655746612d1720d9a57de13</originalsourceid><addsrcrecordid>eNp10DtPwzAUhmELgaBcBv4AisQCQ8AnqWNnRFWhSFw6lDlynBPqKo2DHQv67zENMCDhxYMfvZI_Qk6BXkE4192yu4KEZ2yHjIAziIHmfJeMKE0hFhljB-TQuRWlMM457JODRDBKOU1HRE0_lO5lr00bTVu0rxpdZOpoIlvTaiWb6MmrBk0pXXiYmHXne6yichM9-qbXyrS1fvV2Gwh4jrb3thx6iyUaG3rHZK-WjcOT7_uIvNxOF5NZ_PB8dz-5eYhVKgSLOSKvUp7SEkolKsYEqzkFrLNcJlBWEhUKnmEmw4_4OMsgqYAntMol4xVCekQuhm5nzZtH1xdr7RQ2jWzReFeAyHMAnuYs0PM_dGW8DT_YKpFmPBdf6nJQyhrnLNZFZ_Va2k0BtPhavgjLF9vlgz37LvpyjdWv_Jk6gOsBvOsGN_-XivlsPiQ_AfwCjd8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1898367985</pqid></control><display><type>article</type><title>Excitation Energies of Canonical Nucleobases Computed by Multiconfigurational Perturbation Theories</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Wiebeler, Christian ; Borin, Veniamin ; Sanchez de Araújo, Adalberto Vasconcelos ; Schapiro, Igor ; Borin, Antonio Carlos</creator><creatorcontrib>Wiebeler, Christian ; Borin, Veniamin ; Sanchez de Araújo, Adalberto Vasconcelos ; Schapiro, Igor ; Borin, Antonio Carlos</creatorcontrib><description>In this computational work, we assessed the performance of ab initio multireference (MR) methods for the calculation of vertical excitation energies of five nucleobases: adenine, guanine, cytosine, thymine and uracil. In total, we have studied 38 singlet and 30 triplet excited states. Where possible we used the multireference configuration interaction (MRCI) method as a reference for various flavors of multireference perturbation theory to second order. In particular, we have benchmarked CASPT2, NEVPT2 and XMCQDPT2. For CASPT2, we have analyzed the single‐state, multistate (MS) and extended MS variants. In addition, we have assessed the effect of the ionization potential electron affinity (IPEA) shift. For NEVPT2, we have used the partially and the strongly contracted variants. Further, we have tested the commonly used RI‐CC2, RI‐ADC2 and EOM‐CCSD methods. Generally, we observe the following trends for singlet excited states: NEVPT2 is the closest MR method to MRCISD+Q, closely followed by CASPT2 with the default IPEA shift. The same trend is observed for triplet states, although NEVPT2 and CASPT2‐IPEA are getting closer. Interestingly, the n, π* singlet excited states were described more accurately than π, π* excited states, while for triplet states the trend is inverted except for NEVPT2. This work is an important benchmark for future photochemical investigations.
The photochemistry of nucleobases (NBs) is of paramount importance because they are building blocks of DNA and RNA that store genetic information. In this computational work we assess the performance of accurate ab initio multireference quantum chemical methods for the calculation of the vertical excitation energies of five NBs: adenine, guanine, cytosine, thymine and uracil. In total we have studied 38 singlet and 30 triplet excited states.</description><identifier>ISSN: 0031-8655</identifier><identifier>EISSN: 1751-1097</identifier><identifier>DOI: 10.1111/php.12765</identifier><identifier>PMID: 28500703</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Adenine ; Bases (nucleic acids) ; Computer applications ; Configuration interaction ; Cytosine ; Electron affinity ; Excitation ; Flavors ; Guanine ; Ionization ; Ionization potentials ; Models, Chemical ; Nucleic Acids - chemistry ; Perturbation methods ; Perturbation theory ; Photochemistry ; Thymine ; Uracil</subject><ispartof>Photochemistry and photobiology, 2017-05, Vol.93 (3), p.888-902</ispartof><rights>2017 The American Society of Photobiology</rights><rights>2017 The American Society of Photobiology.</rights><rights>2017 American Society for Photobiology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3885-7ee7d3730b1bc8d5585f701ef69a21bdaece876e6a655746612d1720d9a57de13</citedby><cites>FETCH-LOGICAL-c3885-7ee7d3730b1bc8d5585f701ef69a21bdaece876e6a655746612d1720d9a57de13</cites><orcidid>0000-0001-8536-6869</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fphp.12765$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fphp.12765$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28500703$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wiebeler, Christian</creatorcontrib><creatorcontrib>Borin, Veniamin</creatorcontrib><creatorcontrib>Sanchez de Araújo, Adalberto Vasconcelos</creatorcontrib><creatorcontrib>Schapiro, Igor</creatorcontrib><creatorcontrib>Borin, Antonio Carlos</creatorcontrib><title>Excitation Energies of Canonical Nucleobases Computed by Multiconfigurational Perturbation Theories</title><title>Photochemistry and photobiology</title><addtitle>Photochem Photobiol</addtitle><description>In this computational work, we assessed the performance of ab initio multireference (MR) methods for the calculation of vertical excitation energies of five nucleobases: adenine, guanine, cytosine, thymine and uracil. In total, we have studied 38 singlet and 30 triplet excited states. Where possible we used the multireference configuration interaction (MRCI) method as a reference for various flavors of multireference perturbation theory to second order. In particular, we have benchmarked CASPT2, NEVPT2 and XMCQDPT2. For CASPT2, we have analyzed the single‐state, multistate (MS) and extended MS variants. In addition, we have assessed the effect of the ionization potential electron affinity (IPEA) shift. For NEVPT2, we have used the partially and the strongly contracted variants. Further, we have tested the commonly used RI‐CC2, RI‐ADC2 and EOM‐CCSD methods. Generally, we observe the following trends for singlet excited states: NEVPT2 is the closest MR method to MRCISD+Q, closely followed by CASPT2 with the default IPEA shift. The same trend is observed for triplet states, although NEVPT2 and CASPT2‐IPEA are getting closer. Interestingly, the n, π* singlet excited states were described more accurately than π, π* excited states, while for triplet states the trend is inverted except for NEVPT2. This work is an important benchmark for future photochemical investigations.
The photochemistry of nucleobases (NBs) is of paramount importance because they are building blocks of DNA and RNA that store genetic information. In this computational work we assess the performance of accurate ab initio multireference quantum chemical methods for the calculation of the vertical excitation energies of five NBs: adenine, guanine, cytosine, thymine and uracil. In total we have studied 38 singlet and 30 triplet excited states.</description><subject>Adenine</subject><subject>Bases (nucleic acids)</subject><subject>Computer applications</subject><subject>Configuration interaction</subject><subject>Cytosine</subject><subject>Electron affinity</subject><subject>Excitation</subject><subject>Flavors</subject><subject>Guanine</subject><subject>Ionization</subject><subject>Ionization potentials</subject><subject>Models, Chemical</subject><subject>Nucleic Acids - chemistry</subject><subject>Perturbation methods</subject><subject>Perturbation theory</subject><subject>Photochemistry</subject><subject>Thymine</subject><subject>Uracil</subject><issn>0031-8655</issn><issn>1751-1097</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10DtPwzAUhmELgaBcBv4AisQCQ8AnqWNnRFWhSFw6lDlynBPqKo2DHQv67zENMCDhxYMfvZI_Qk6BXkE4192yu4KEZ2yHjIAziIHmfJeMKE0hFhljB-TQuRWlMM457JODRDBKOU1HRE0_lO5lr00bTVu0rxpdZOpoIlvTaiWb6MmrBk0pXXiYmHXne6yichM9-qbXyrS1fvV2Gwh4jrb3thx6iyUaG3rHZK-WjcOT7_uIvNxOF5NZ_PB8dz-5eYhVKgSLOSKvUp7SEkolKsYEqzkFrLNcJlBWEhUKnmEmw4_4OMsgqYAntMol4xVCekQuhm5nzZtH1xdr7RQ2jWzReFeAyHMAnuYs0PM_dGW8DT_YKpFmPBdf6nJQyhrnLNZFZ_Va2k0BtPhavgjLF9vlgz37LvpyjdWv_Jk6gOsBvOsGN_-XivlsPiQ_AfwCjd8</recordid><startdate>201705</startdate><enddate>201705</enddate><creator>Wiebeler, Christian</creator><creator>Borin, Veniamin</creator><creator>Sanchez de Araújo, Adalberto Vasconcelos</creator><creator>Schapiro, Igor</creator><creator>Borin, Antonio Carlos</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>4T-</scope><scope>7TM</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8536-6869</orcidid></search><sort><creationdate>201705</creationdate><title>Excitation Energies of Canonical Nucleobases Computed by Multiconfigurational Perturbation Theories</title><author>Wiebeler, Christian ; Borin, Veniamin ; Sanchez de Araújo, Adalberto Vasconcelos ; Schapiro, Igor ; Borin, Antonio Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3885-7ee7d3730b1bc8d5585f701ef69a21bdaece876e6a655746612d1720d9a57de13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adenine</topic><topic>Bases (nucleic acids)</topic><topic>Computer applications</topic><topic>Configuration interaction</topic><topic>Cytosine</topic><topic>Electron affinity</topic><topic>Excitation</topic><topic>Flavors</topic><topic>Guanine</topic><topic>Ionization</topic><topic>Ionization potentials</topic><topic>Models, Chemical</topic><topic>Nucleic Acids - chemistry</topic><topic>Perturbation methods</topic><topic>Perturbation theory</topic><topic>Photochemistry</topic><topic>Thymine</topic><topic>Uracil</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wiebeler, Christian</creatorcontrib><creatorcontrib>Borin, Veniamin</creatorcontrib><creatorcontrib>Sanchez de Araújo, Adalberto Vasconcelos</creatorcontrib><creatorcontrib>Schapiro, Igor</creatorcontrib><creatorcontrib>Borin, Antonio Carlos</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Docstoc</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Photochemistry and photobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wiebeler, Christian</au><au>Borin, Veniamin</au><au>Sanchez de Araújo, Adalberto Vasconcelos</au><au>Schapiro, Igor</au><au>Borin, Antonio Carlos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Excitation Energies of Canonical Nucleobases Computed by Multiconfigurational Perturbation Theories</atitle><jtitle>Photochemistry and photobiology</jtitle><addtitle>Photochem Photobiol</addtitle><date>2017-05</date><risdate>2017</risdate><volume>93</volume><issue>3</issue><spage>888</spage><epage>902</epage><pages>888-902</pages><issn>0031-8655</issn><eissn>1751-1097</eissn><abstract>In this computational work, we assessed the performance of ab initio multireference (MR) methods for the calculation of vertical excitation energies of five nucleobases: adenine, guanine, cytosine, thymine and uracil. In total, we have studied 38 singlet and 30 triplet excited states. Where possible we used the multireference configuration interaction (MRCI) method as a reference for various flavors of multireference perturbation theory to second order. In particular, we have benchmarked CASPT2, NEVPT2 and XMCQDPT2. For CASPT2, we have analyzed the single‐state, multistate (MS) and extended MS variants. In addition, we have assessed the effect of the ionization potential electron affinity (IPEA) shift. For NEVPT2, we have used the partially and the strongly contracted variants. Further, we have tested the commonly used RI‐CC2, RI‐ADC2 and EOM‐CCSD methods. Generally, we observe the following trends for singlet excited states: NEVPT2 is the closest MR method to MRCISD+Q, closely followed by CASPT2 with the default IPEA shift. The same trend is observed for triplet states, although NEVPT2 and CASPT2‐IPEA are getting closer. Interestingly, the n, π* singlet excited states were described more accurately than π, π* excited states, while for triplet states the trend is inverted except for NEVPT2. This work is an important benchmark for future photochemical investigations.
The photochemistry of nucleobases (NBs) is of paramount importance because they are building blocks of DNA and RNA that store genetic information. In this computational work we assess the performance of accurate ab initio multireference quantum chemical methods for the calculation of the vertical excitation energies of five NBs: adenine, guanine, cytosine, thymine and uracil. In total we have studied 38 singlet and 30 triplet excited states.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>28500703</pmid><doi>10.1111/php.12765</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-8536-6869</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-8655 |
ispartof | Photochemistry and photobiology, 2017-05, Vol.93 (3), p.888-902 |
issn | 0031-8655 1751-1097 |
language | eng |
recordid | cdi_proquest_miscellaneous_1899117395 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Adenine Bases (nucleic acids) Computer applications Configuration interaction Cytosine Electron affinity Excitation Flavors Guanine Ionization Ionization potentials Models, Chemical Nucleic Acids - chemistry Perturbation methods Perturbation theory Photochemistry Thymine Uracil |
title | Excitation Energies of Canonical Nucleobases Computed by Multiconfigurational Perturbation Theories |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A05%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Excitation%20Energies%20of%20Canonical%20Nucleobases%20Computed%20by%20Multiconfigurational%20Perturbation%20Theories&rft.jtitle=Photochemistry%20and%20photobiology&rft.au=Wiebeler,%20Christian&rft.date=2017-05&rft.volume=93&rft.issue=3&rft.spage=888&rft.epage=902&rft.pages=888-902&rft.issn=0031-8655&rft.eissn=1751-1097&rft_id=info:doi/10.1111/php.12765&rft_dat=%3Cproquest_cross%3E1899117395%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1898367985&rft_id=info:pmid/28500703&rfr_iscdi=true |