Excitation Energies of Canonical Nucleobases Computed by Multiconfigurational Perturbation Theories

In this computational work, we assessed the performance of ab initio multireference (MR) methods for the calculation of vertical excitation energies of five nucleobases: adenine, guanine, cytosine, thymine and uracil. In total, we have studied 38 singlet and 30 triplet excited states. Where possible...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Photochemistry and photobiology 2017-05, Vol.93 (3), p.888-902
Hauptverfasser: Wiebeler, Christian, Borin, Veniamin, Sanchez de Araújo, Adalberto Vasconcelos, Schapiro, Igor, Borin, Antonio Carlos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 902
container_issue 3
container_start_page 888
container_title Photochemistry and photobiology
container_volume 93
creator Wiebeler, Christian
Borin, Veniamin
Sanchez de Araújo, Adalberto Vasconcelos
Schapiro, Igor
Borin, Antonio Carlos
description In this computational work, we assessed the performance of ab initio multireference (MR) methods for the calculation of vertical excitation energies of five nucleobases: adenine, guanine, cytosine, thymine and uracil. In total, we have studied 38 singlet and 30 triplet excited states. Where possible we used the multireference configuration interaction (MRCI) method as a reference for various flavors of multireference perturbation theory to second order. In particular, we have benchmarked CASPT2, NEVPT2 and XMCQDPT2. For CASPT2, we have analyzed the single‐state, multistate (MS) and extended MS variants. In addition, we have assessed the effect of the ionization potential electron affinity (IPEA) shift. For NEVPT2, we have used the partially and the strongly contracted variants. Further, we have tested the commonly used RI‐CC2, RI‐ADC2 and EOM‐CCSD methods. Generally, we observe the following trends for singlet excited states: NEVPT2 is the closest MR method to MRCISD+Q, closely followed by CASPT2 with the default IPEA shift. The same trend is observed for triplet states, although NEVPT2 and CASPT2‐IPEA are getting closer. Interestingly, the n, π* singlet excited states were described more accurately than π, π* excited states, while for triplet states the trend is inverted except for NEVPT2. This work is an important benchmark for future photochemical investigations. The photochemistry of nucleobases (NBs) is of paramount importance because they are building blocks of DNA and RNA that store genetic information. In this computational work we assess the performance of accurate ab initio multireference quantum chemical methods for the calculation of the vertical excitation energies of five NBs: adenine, guanine, cytosine, thymine and uracil. In total we have studied 38 singlet and 30 triplet excited states.
doi_str_mv 10.1111/php.12765
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1899117395</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1899117395</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3885-7ee7d3730b1bc8d5585f701ef69a21bdaece876e6a655746612d1720d9a57de13</originalsourceid><addsrcrecordid>eNp10DtPwzAUhmELgaBcBv4AisQCQ8AnqWNnRFWhSFw6lDlynBPqKo2DHQv67zENMCDhxYMfvZI_Qk6BXkE4192yu4KEZ2yHjIAziIHmfJeMKE0hFhljB-TQuRWlMM457JODRDBKOU1HRE0_lO5lr00bTVu0rxpdZOpoIlvTaiWb6MmrBk0pXXiYmHXne6yichM9-qbXyrS1fvV2Gwh4jrb3thx6iyUaG3rHZK-WjcOT7_uIvNxOF5NZ_PB8dz-5eYhVKgSLOSKvUp7SEkolKsYEqzkFrLNcJlBWEhUKnmEmw4_4OMsgqYAntMol4xVCekQuhm5nzZtH1xdr7RQ2jWzReFeAyHMAnuYs0PM_dGW8DT_YKpFmPBdf6nJQyhrnLNZFZ_Va2k0BtPhavgjLF9vlgz37LvpyjdWv_Jk6gOsBvOsGN_-XivlsPiQ_AfwCjd8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1898367985</pqid></control><display><type>article</type><title>Excitation Energies of Canonical Nucleobases Computed by Multiconfigurational Perturbation Theories</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Wiebeler, Christian ; Borin, Veniamin ; Sanchez de Araújo, Adalberto Vasconcelos ; Schapiro, Igor ; Borin, Antonio Carlos</creator><creatorcontrib>Wiebeler, Christian ; Borin, Veniamin ; Sanchez de Araújo, Adalberto Vasconcelos ; Schapiro, Igor ; Borin, Antonio Carlos</creatorcontrib><description>In this computational work, we assessed the performance of ab initio multireference (MR) methods for the calculation of vertical excitation energies of five nucleobases: adenine, guanine, cytosine, thymine and uracil. In total, we have studied 38 singlet and 30 triplet excited states. Where possible we used the multireference configuration interaction (MRCI) method as a reference for various flavors of multireference perturbation theory to second order. In particular, we have benchmarked CASPT2, NEVPT2 and XMCQDPT2. For CASPT2, we have analyzed the single‐state, multistate (MS) and extended MS variants. In addition, we have assessed the effect of the ionization potential electron affinity (IPEA) shift. For NEVPT2, we have used the partially and the strongly contracted variants. Further, we have tested the commonly used RI‐CC2, RI‐ADC2 and EOM‐CCSD methods. Generally, we observe the following trends for singlet excited states: NEVPT2 is the closest MR method to MRCISD+Q, closely followed by CASPT2 with the default IPEA shift. The same trend is observed for triplet states, although NEVPT2 and CASPT2‐IPEA are getting closer. Interestingly, the n, π* singlet excited states were described more accurately than π, π* excited states, while for triplet states the trend is inverted except for NEVPT2. This work is an important benchmark for future photochemical investigations. The photochemistry of nucleobases (NBs) is of paramount importance because they are building blocks of DNA and RNA that store genetic information. In this computational work we assess the performance of accurate ab initio multireference quantum chemical methods for the calculation of the vertical excitation energies of five NBs: adenine, guanine, cytosine, thymine and uracil. In total we have studied 38 singlet and 30 triplet excited states.</description><identifier>ISSN: 0031-8655</identifier><identifier>EISSN: 1751-1097</identifier><identifier>DOI: 10.1111/php.12765</identifier><identifier>PMID: 28500703</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Adenine ; Bases (nucleic acids) ; Computer applications ; Configuration interaction ; Cytosine ; Electron affinity ; Excitation ; Flavors ; Guanine ; Ionization ; Ionization potentials ; Models, Chemical ; Nucleic Acids - chemistry ; Perturbation methods ; Perturbation theory ; Photochemistry ; Thymine ; Uracil</subject><ispartof>Photochemistry and photobiology, 2017-05, Vol.93 (3), p.888-902</ispartof><rights>2017 The American Society of Photobiology</rights><rights>2017 The American Society of Photobiology.</rights><rights>2017 American Society for Photobiology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3885-7ee7d3730b1bc8d5585f701ef69a21bdaece876e6a655746612d1720d9a57de13</citedby><cites>FETCH-LOGICAL-c3885-7ee7d3730b1bc8d5585f701ef69a21bdaece876e6a655746612d1720d9a57de13</cites><orcidid>0000-0001-8536-6869</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fphp.12765$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fphp.12765$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28500703$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wiebeler, Christian</creatorcontrib><creatorcontrib>Borin, Veniamin</creatorcontrib><creatorcontrib>Sanchez de Araújo, Adalberto Vasconcelos</creatorcontrib><creatorcontrib>Schapiro, Igor</creatorcontrib><creatorcontrib>Borin, Antonio Carlos</creatorcontrib><title>Excitation Energies of Canonical Nucleobases Computed by Multiconfigurational Perturbation Theories</title><title>Photochemistry and photobiology</title><addtitle>Photochem Photobiol</addtitle><description>In this computational work, we assessed the performance of ab initio multireference (MR) methods for the calculation of vertical excitation energies of five nucleobases: adenine, guanine, cytosine, thymine and uracil. In total, we have studied 38 singlet and 30 triplet excited states. Where possible we used the multireference configuration interaction (MRCI) method as a reference for various flavors of multireference perturbation theory to second order. In particular, we have benchmarked CASPT2, NEVPT2 and XMCQDPT2. For CASPT2, we have analyzed the single‐state, multistate (MS) and extended MS variants. In addition, we have assessed the effect of the ionization potential electron affinity (IPEA) shift. For NEVPT2, we have used the partially and the strongly contracted variants. Further, we have tested the commonly used RI‐CC2, RI‐ADC2 and EOM‐CCSD methods. Generally, we observe the following trends for singlet excited states: NEVPT2 is the closest MR method to MRCISD+Q, closely followed by CASPT2 with the default IPEA shift. The same trend is observed for triplet states, although NEVPT2 and CASPT2‐IPEA are getting closer. Interestingly, the n, π* singlet excited states were described more accurately than π, π* excited states, while for triplet states the trend is inverted except for NEVPT2. This work is an important benchmark for future photochemical investigations. The photochemistry of nucleobases (NBs) is of paramount importance because they are building blocks of DNA and RNA that store genetic information. In this computational work we assess the performance of accurate ab initio multireference quantum chemical methods for the calculation of the vertical excitation energies of five NBs: adenine, guanine, cytosine, thymine and uracil. In total we have studied 38 singlet and 30 triplet excited states.</description><subject>Adenine</subject><subject>Bases (nucleic acids)</subject><subject>Computer applications</subject><subject>Configuration interaction</subject><subject>Cytosine</subject><subject>Electron affinity</subject><subject>Excitation</subject><subject>Flavors</subject><subject>Guanine</subject><subject>Ionization</subject><subject>Ionization potentials</subject><subject>Models, Chemical</subject><subject>Nucleic Acids - chemistry</subject><subject>Perturbation methods</subject><subject>Perturbation theory</subject><subject>Photochemistry</subject><subject>Thymine</subject><subject>Uracil</subject><issn>0031-8655</issn><issn>1751-1097</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10DtPwzAUhmELgaBcBv4AisQCQ8AnqWNnRFWhSFw6lDlynBPqKo2DHQv67zENMCDhxYMfvZI_Qk6BXkE4192yu4KEZ2yHjIAziIHmfJeMKE0hFhljB-TQuRWlMM457JODRDBKOU1HRE0_lO5lr00bTVu0rxpdZOpoIlvTaiWb6MmrBk0pXXiYmHXne6yichM9-qbXyrS1fvV2Gwh4jrb3thx6iyUaG3rHZK-WjcOT7_uIvNxOF5NZ_PB8dz-5eYhVKgSLOSKvUp7SEkolKsYEqzkFrLNcJlBWEhUKnmEmw4_4OMsgqYAntMol4xVCekQuhm5nzZtH1xdr7RQ2jWzReFeAyHMAnuYs0PM_dGW8DT_YKpFmPBdf6nJQyhrnLNZFZ_Va2k0BtPhavgjLF9vlgz37LvpyjdWv_Jk6gOsBvOsGN_-XivlsPiQ_AfwCjd8</recordid><startdate>201705</startdate><enddate>201705</enddate><creator>Wiebeler, Christian</creator><creator>Borin, Veniamin</creator><creator>Sanchez de Araújo, Adalberto Vasconcelos</creator><creator>Schapiro, Igor</creator><creator>Borin, Antonio Carlos</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>4T-</scope><scope>7TM</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8536-6869</orcidid></search><sort><creationdate>201705</creationdate><title>Excitation Energies of Canonical Nucleobases Computed by Multiconfigurational Perturbation Theories</title><author>Wiebeler, Christian ; Borin, Veniamin ; Sanchez de Araújo, Adalberto Vasconcelos ; Schapiro, Igor ; Borin, Antonio Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3885-7ee7d3730b1bc8d5585f701ef69a21bdaece876e6a655746612d1720d9a57de13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adenine</topic><topic>Bases (nucleic acids)</topic><topic>Computer applications</topic><topic>Configuration interaction</topic><topic>Cytosine</topic><topic>Electron affinity</topic><topic>Excitation</topic><topic>Flavors</topic><topic>Guanine</topic><topic>Ionization</topic><topic>Ionization potentials</topic><topic>Models, Chemical</topic><topic>Nucleic Acids - chemistry</topic><topic>Perturbation methods</topic><topic>Perturbation theory</topic><topic>Photochemistry</topic><topic>Thymine</topic><topic>Uracil</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wiebeler, Christian</creatorcontrib><creatorcontrib>Borin, Veniamin</creatorcontrib><creatorcontrib>Sanchez de Araújo, Adalberto Vasconcelos</creatorcontrib><creatorcontrib>Schapiro, Igor</creatorcontrib><creatorcontrib>Borin, Antonio Carlos</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Docstoc</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Photochemistry and photobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wiebeler, Christian</au><au>Borin, Veniamin</au><au>Sanchez de Araújo, Adalberto Vasconcelos</au><au>Schapiro, Igor</au><au>Borin, Antonio Carlos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Excitation Energies of Canonical Nucleobases Computed by Multiconfigurational Perturbation Theories</atitle><jtitle>Photochemistry and photobiology</jtitle><addtitle>Photochem Photobiol</addtitle><date>2017-05</date><risdate>2017</risdate><volume>93</volume><issue>3</issue><spage>888</spage><epage>902</epage><pages>888-902</pages><issn>0031-8655</issn><eissn>1751-1097</eissn><abstract>In this computational work, we assessed the performance of ab initio multireference (MR) methods for the calculation of vertical excitation energies of five nucleobases: adenine, guanine, cytosine, thymine and uracil. In total, we have studied 38 singlet and 30 triplet excited states. Where possible we used the multireference configuration interaction (MRCI) method as a reference for various flavors of multireference perturbation theory to second order. In particular, we have benchmarked CASPT2, NEVPT2 and XMCQDPT2. For CASPT2, we have analyzed the single‐state, multistate (MS) and extended MS variants. In addition, we have assessed the effect of the ionization potential electron affinity (IPEA) shift. For NEVPT2, we have used the partially and the strongly contracted variants. Further, we have tested the commonly used RI‐CC2, RI‐ADC2 and EOM‐CCSD methods. Generally, we observe the following trends for singlet excited states: NEVPT2 is the closest MR method to MRCISD+Q, closely followed by CASPT2 with the default IPEA shift. The same trend is observed for triplet states, although NEVPT2 and CASPT2‐IPEA are getting closer. Interestingly, the n, π* singlet excited states were described more accurately than π, π* excited states, while for triplet states the trend is inverted except for NEVPT2. This work is an important benchmark for future photochemical investigations. The photochemistry of nucleobases (NBs) is of paramount importance because they are building blocks of DNA and RNA that store genetic information. In this computational work we assess the performance of accurate ab initio multireference quantum chemical methods for the calculation of the vertical excitation energies of five NBs: adenine, guanine, cytosine, thymine and uracil. In total we have studied 38 singlet and 30 triplet excited states.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>28500703</pmid><doi>10.1111/php.12765</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-8536-6869</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-8655
ispartof Photochemistry and photobiology, 2017-05, Vol.93 (3), p.888-902
issn 0031-8655
1751-1097
language eng
recordid cdi_proquest_miscellaneous_1899117395
source MEDLINE; Access via Wiley Online Library
subjects Adenine
Bases (nucleic acids)
Computer applications
Configuration interaction
Cytosine
Electron affinity
Excitation
Flavors
Guanine
Ionization
Ionization potentials
Models, Chemical
Nucleic Acids - chemistry
Perturbation methods
Perturbation theory
Photochemistry
Thymine
Uracil
title Excitation Energies of Canonical Nucleobases Computed by Multiconfigurational Perturbation Theories
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A05%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Excitation%20Energies%20of%20Canonical%20Nucleobases%20Computed%20by%20Multiconfigurational%20Perturbation%20Theories&rft.jtitle=Photochemistry%20and%20photobiology&rft.au=Wiebeler,%20Christian&rft.date=2017-05&rft.volume=93&rft.issue=3&rft.spage=888&rft.epage=902&rft.pages=888-902&rft.issn=0031-8655&rft.eissn=1751-1097&rft_id=info:doi/10.1111/php.12765&rft_dat=%3Cproquest_cross%3E1899117395%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1898367985&rft_id=info:pmid/28500703&rfr_iscdi=true