Functional structure of the bromeliad tank microbiome is strongly shaped by local geochemical conditions
Summary Phytotelmata in tank‐forming Bromeliaceae plants are regarded as potential miniature models for aquatic ecology, but detailed investigations of their microbial communities are rare. Hence, the biogeochemistry in bromeliad tanks remains poorly understood. Here we investigate the structure of...
Gespeichert in:
Veröffentlicht in: | Environmental microbiology 2017-08, Vol.19 (8), p.3132-3151 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3151 |
---|---|
container_issue | 8 |
container_start_page | 3132 |
container_title | Environmental microbiology |
container_volume | 19 |
creator | Louca, Stilianos Jacques, Saulo M. S. Pires, Aliny P. F. Leal, Juliana S. González, Angélica L. Doebeli, Michael Farjalla, Vinicius F. |
description | Summary
Phytotelmata in tank‐forming Bromeliaceae plants are regarded as potential miniature models for aquatic ecology, but detailed investigations of their microbial communities are rare. Hence, the biogeochemistry in bromeliad tanks remains poorly understood. Here we investigate the structure of bacterial and archaeal communities inhabiting the detritus within the tanks of two bromeliad species, Aechmea nudicaulis and Neoregelia cruenta, from a Brazilian sand dune forest. We used metagenomic sequencing for functional community profiling and 16S sequencing for taxonomic profiling. We estimated the correlation between functional groups and various environmental variables, and compared communities between bromeliad species. In all bromeliads, microbial communities spanned a metabolic network adapted to oxygen‐limited conditions, including all denitrification steps, ammonification, sulfate respiration, methanogenesis, reductive acetogenesis and anoxygenic phototrophy. Overall,
CO2 reducers dominated in abundance over sulfate reducers, and anoxygenic phototrophs largely outnumbered oxygenic photoautotrophs. Functional community structure correlated strongly with environmental variables, between and within a single bromeliad species. Methanogens and reductive acetogens correlated with detrital volume and canopy coverage, and exhibited higher relative abundances in N. cruenta. A comparison of bromeliads to freshwater lake sediments and soil from around the world, revealed stark differences in terms of taxonomic as well as functional microbial community structure. |
doi_str_mv | 10.1111/1462-2920.13788 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1899111243</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1929299630</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3718-2253a991f3c2fe92fbe0940a0bfd81fdaf952706803f4ede4a7b80a1d053ce503</originalsourceid><addsrcrecordid>eNqFkT1PwzAQhi0EoqUwsyFLLCyl_kgae0RV-ZCKWGC2HOdMDUlc7ESo_x6HQgcWvPh8evxI9x5C55Rc03RmNJuzKZMsPXkhxAEa7zuH-5qyETqJ8Y0QWvCCHKMRE5kQRc7GaH3bt6ZzvtU1jl3oTdcHwN7ibg24DL6B2ukKd7p9x40zwZcu9bCLA-3b13qL41pvoMLlFtfeJM0reLOGBKfa-LZygz6eoiOr6whnP_cEvdwunxf309XT3cPiZjU1vKBiyljOtZTUcsMsSGZLIDIjmpS2EtRW2sqcFWQuCLcZVJDpohRE04rk3EBO-ARd7byb4D96iJ1qXDRQ17oF30dFRbJTyjKe0Ms_6JvvQ0oiUTJFKOWcD8LZjkrDxxjAqk1wjQ5bRYkalqCGmNUQufpeQvpx8ePtywaqPf-begLyHfDpatj-51PLx4ed-AvUWZHa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1929299630</pqid></control><display><type>article</type><title>Functional structure of the bromeliad tank microbiome is strongly shaped by local geochemical conditions</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Louca, Stilianos ; Jacques, Saulo M. S. ; Pires, Aliny P. F. ; Leal, Juliana S. ; González, Angélica L. ; Doebeli, Michael ; Farjalla, Vinicius F.</creator><creatorcontrib>Louca, Stilianos ; Jacques, Saulo M. S. ; Pires, Aliny P. F. ; Leal, Juliana S. ; González, Angélica L. ; Doebeli, Michael ; Farjalla, Vinicius F.</creatorcontrib><description>Summary
Phytotelmata in tank‐forming Bromeliaceae plants are regarded as potential miniature models for aquatic ecology, but detailed investigations of their microbial communities are rare. Hence, the biogeochemistry in bromeliad tanks remains poorly understood. Here we investigate the structure of bacterial and archaeal communities inhabiting the detritus within the tanks of two bromeliad species, Aechmea nudicaulis and Neoregelia cruenta, from a Brazilian sand dune forest. We used metagenomic sequencing for functional community profiling and 16S sequencing for taxonomic profiling. We estimated the correlation between functional groups and various environmental variables, and compared communities between bromeliad species. In all bromeliads, microbial communities spanned a metabolic network adapted to oxygen‐limited conditions, including all denitrification steps, ammonification, sulfate respiration, methanogenesis, reductive acetogenesis and anoxygenic phototrophy. Overall,
CO2 reducers dominated in abundance over sulfate reducers, and anoxygenic phototrophs largely outnumbered oxygenic photoautotrophs. Functional community structure correlated strongly with environmental variables, between and within a single bromeliad species. Methanogens and reductive acetogens correlated with detrital volume and canopy coverage, and exhibited higher relative abundances in N. cruenta. A comparison of bromeliads to freshwater lake sediments and soil from around the world, revealed stark differences in terms of taxonomic as well as functional microbial community structure.</description><identifier>ISSN: 1462-2912</identifier><identifier>EISSN: 1462-2920</identifier><identifier>DOI: 10.1111/1462-2920.13788</identifier><identifier>PMID: 28488752</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Above ground tanks ; Abundance ; Acetogenesis ; Ammonification ; Aquatic ecology ; Aquatic plants ; Archaea - classification ; Archaea - genetics ; Archaea - isolation & purification ; Bacteria ; Biogeochemistry ; Brazil ; Bromeliaceae - microbiology ; Canopies ; Communities ; Community structure ; Correlation ; Coverage ; Denitrification ; Detritus ; Ecological monitoring ; Ecology ; Fresh Water - microbiology ; Freshwater ; Freshwater lakes ; Functional groups ; Geochemistry ; Inland water environment ; Lake deposits ; Lake sediments ; Methanogenesis ; Methanogenic bacteria ; Microbial activity ; Microbiomes ; Microbiota ; Microorganisms ; Phototrophy ; Plant cover ; Plants (botany) ; Profiling ; Sediments ; Sequencing ; Soil ; Soil - chemistry ; Soil Microbiology ; Species ; Sulfates ; Tanks ; Taxonomy</subject><ispartof>Environmental microbiology, 2017-08, Vol.19 (8), p.3132-3151</ispartof><rights>2017 Society for Applied Microbiology and John Wiley & Sons Ltd</rights><rights>2017 Society for Applied Microbiology and John Wiley & Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3718-2253a991f3c2fe92fbe0940a0bfd81fdaf952706803f4ede4a7b80a1d053ce503</citedby><cites>FETCH-LOGICAL-c3718-2253a991f3c2fe92fbe0940a0bfd81fdaf952706803f4ede4a7b80a1d053ce503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1462-2920.13788$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1462-2920.13788$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28488752$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Louca, Stilianos</creatorcontrib><creatorcontrib>Jacques, Saulo M. S.</creatorcontrib><creatorcontrib>Pires, Aliny P. F.</creatorcontrib><creatorcontrib>Leal, Juliana S.</creatorcontrib><creatorcontrib>González, Angélica L.</creatorcontrib><creatorcontrib>Doebeli, Michael</creatorcontrib><creatorcontrib>Farjalla, Vinicius F.</creatorcontrib><title>Functional structure of the bromeliad tank microbiome is strongly shaped by local geochemical conditions</title><title>Environmental microbiology</title><addtitle>Environ Microbiol</addtitle><description>Summary
Phytotelmata in tank‐forming Bromeliaceae plants are regarded as potential miniature models for aquatic ecology, but detailed investigations of their microbial communities are rare. Hence, the biogeochemistry in bromeliad tanks remains poorly understood. Here we investigate the structure of bacterial and archaeal communities inhabiting the detritus within the tanks of two bromeliad species, Aechmea nudicaulis and Neoregelia cruenta, from a Brazilian sand dune forest. We used metagenomic sequencing for functional community profiling and 16S sequencing for taxonomic profiling. We estimated the correlation between functional groups and various environmental variables, and compared communities between bromeliad species. In all bromeliads, microbial communities spanned a metabolic network adapted to oxygen‐limited conditions, including all denitrification steps, ammonification, sulfate respiration, methanogenesis, reductive acetogenesis and anoxygenic phototrophy. Overall,
CO2 reducers dominated in abundance over sulfate reducers, and anoxygenic phototrophs largely outnumbered oxygenic photoautotrophs. Functional community structure correlated strongly with environmental variables, between and within a single bromeliad species. Methanogens and reductive acetogens correlated with detrital volume and canopy coverage, and exhibited higher relative abundances in N. cruenta. A comparison of bromeliads to freshwater lake sediments and soil from around the world, revealed stark differences in terms of taxonomic as well as functional microbial community structure.</description><subject>Above ground tanks</subject><subject>Abundance</subject><subject>Acetogenesis</subject><subject>Ammonification</subject><subject>Aquatic ecology</subject><subject>Aquatic plants</subject><subject>Archaea - classification</subject><subject>Archaea - genetics</subject><subject>Archaea - isolation & purification</subject><subject>Bacteria</subject><subject>Biogeochemistry</subject><subject>Brazil</subject><subject>Bromeliaceae - microbiology</subject><subject>Canopies</subject><subject>Communities</subject><subject>Community structure</subject><subject>Correlation</subject><subject>Coverage</subject><subject>Denitrification</subject><subject>Detritus</subject><subject>Ecological monitoring</subject><subject>Ecology</subject><subject>Fresh Water - microbiology</subject><subject>Freshwater</subject><subject>Freshwater lakes</subject><subject>Functional groups</subject><subject>Geochemistry</subject><subject>Inland water environment</subject><subject>Lake deposits</subject><subject>Lake sediments</subject><subject>Methanogenesis</subject><subject>Methanogenic bacteria</subject><subject>Microbial activity</subject><subject>Microbiomes</subject><subject>Microbiota</subject><subject>Microorganisms</subject><subject>Phototrophy</subject><subject>Plant cover</subject><subject>Plants (botany)</subject><subject>Profiling</subject><subject>Sediments</subject><subject>Sequencing</subject><subject>Soil</subject><subject>Soil - chemistry</subject><subject>Soil Microbiology</subject><subject>Species</subject><subject>Sulfates</subject><subject>Tanks</subject><subject>Taxonomy</subject><issn>1462-2912</issn><issn>1462-2920</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkT1PwzAQhi0EoqUwsyFLLCyl_kgae0RV-ZCKWGC2HOdMDUlc7ESo_x6HQgcWvPh8evxI9x5C55Rc03RmNJuzKZMsPXkhxAEa7zuH-5qyETqJ8Y0QWvCCHKMRE5kQRc7GaH3bt6ZzvtU1jl3oTdcHwN7ibg24DL6B2ukKd7p9x40zwZcu9bCLA-3b13qL41pvoMLlFtfeJM0reLOGBKfa-LZygz6eoiOr6whnP_cEvdwunxf309XT3cPiZjU1vKBiyljOtZTUcsMsSGZLIDIjmpS2EtRW2sqcFWQuCLcZVJDpohRE04rk3EBO-ARd7byb4D96iJ1qXDRQ17oF30dFRbJTyjKe0Ms_6JvvQ0oiUTJFKOWcD8LZjkrDxxjAqk1wjQ5bRYkalqCGmNUQufpeQvpx8ePtywaqPf-begLyHfDpatj-51PLx4ed-AvUWZHa</recordid><startdate>201708</startdate><enddate>201708</enddate><creator>Louca, Stilianos</creator><creator>Jacques, Saulo M. S.</creator><creator>Pires, Aliny P. F.</creator><creator>Leal, Juliana S.</creator><creator>González, Angélica L.</creator><creator>Doebeli, Michael</creator><creator>Farjalla, Vinicius F.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7ST</scope><scope>7T7</scope><scope>7TN</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>201708</creationdate><title>Functional structure of the bromeliad tank microbiome is strongly shaped by local geochemical conditions</title><author>Louca, Stilianos ; Jacques, Saulo M. S. ; Pires, Aliny P. F. ; Leal, Juliana S. ; González, Angélica L. ; Doebeli, Michael ; Farjalla, Vinicius F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3718-2253a991f3c2fe92fbe0940a0bfd81fdaf952706803f4ede4a7b80a1d053ce503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Above ground tanks</topic><topic>Abundance</topic><topic>Acetogenesis</topic><topic>Ammonification</topic><topic>Aquatic ecology</topic><topic>Aquatic plants</topic><topic>Archaea - classification</topic><topic>Archaea - genetics</topic><topic>Archaea - isolation & purification</topic><topic>Bacteria</topic><topic>Biogeochemistry</topic><topic>Brazil</topic><topic>Bromeliaceae - microbiology</topic><topic>Canopies</topic><topic>Communities</topic><topic>Community structure</topic><topic>Correlation</topic><topic>Coverage</topic><topic>Denitrification</topic><topic>Detritus</topic><topic>Ecological monitoring</topic><topic>Ecology</topic><topic>Fresh Water - microbiology</topic><topic>Freshwater</topic><topic>Freshwater lakes</topic><topic>Functional groups</topic><topic>Geochemistry</topic><topic>Inland water environment</topic><topic>Lake deposits</topic><topic>Lake sediments</topic><topic>Methanogenesis</topic><topic>Methanogenic bacteria</topic><topic>Microbial activity</topic><topic>Microbiomes</topic><topic>Microbiota</topic><topic>Microorganisms</topic><topic>Phototrophy</topic><topic>Plant cover</topic><topic>Plants (botany)</topic><topic>Profiling</topic><topic>Sediments</topic><topic>Sequencing</topic><topic>Soil</topic><topic>Soil - chemistry</topic><topic>Soil Microbiology</topic><topic>Species</topic><topic>Sulfates</topic><topic>Tanks</topic><topic>Taxonomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Louca, Stilianos</creatorcontrib><creatorcontrib>Jacques, Saulo M. S.</creatorcontrib><creatorcontrib>Pires, Aliny P. F.</creatorcontrib><creatorcontrib>Leal, Juliana S.</creatorcontrib><creatorcontrib>González, Angélica L.</creatorcontrib><creatorcontrib>Doebeli, Michael</creatorcontrib><creatorcontrib>Farjalla, Vinicius F.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Louca, Stilianos</au><au>Jacques, Saulo M. S.</au><au>Pires, Aliny P. F.</au><au>Leal, Juliana S.</au><au>González, Angélica L.</au><au>Doebeli, Michael</au><au>Farjalla, Vinicius F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional structure of the bromeliad tank microbiome is strongly shaped by local geochemical conditions</atitle><jtitle>Environmental microbiology</jtitle><addtitle>Environ Microbiol</addtitle><date>2017-08</date><risdate>2017</risdate><volume>19</volume><issue>8</issue><spage>3132</spage><epage>3151</epage><pages>3132-3151</pages><issn>1462-2912</issn><eissn>1462-2920</eissn><abstract>Summary
Phytotelmata in tank‐forming Bromeliaceae plants are regarded as potential miniature models for aquatic ecology, but detailed investigations of their microbial communities are rare. Hence, the biogeochemistry in bromeliad tanks remains poorly understood. Here we investigate the structure of bacterial and archaeal communities inhabiting the detritus within the tanks of two bromeliad species, Aechmea nudicaulis and Neoregelia cruenta, from a Brazilian sand dune forest. We used metagenomic sequencing for functional community profiling and 16S sequencing for taxonomic profiling. We estimated the correlation between functional groups and various environmental variables, and compared communities between bromeliad species. In all bromeliads, microbial communities spanned a metabolic network adapted to oxygen‐limited conditions, including all denitrification steps, ammonification, sulfate respiration, methanogenesis, reductive acetogenesis and anoxygenic phototrophy. Overall,
CO2 reducers dominated in abundance over sulfate reducers, and anoxygenic phototrophs largely outnumbered oxygenic photoautotrophs. Functional community structure correlated strongly with environmental variables, between and within a single bromeliad species. Methanogens and reductive acetogens correlated with detrital volume and canopy coverage, and exhibited higher relative abundances in N. cruenta. A comparison of bromeliads to freshwater lake sediments and soil from around the world, revealed stark differences in terms of taxonomic as well as functional microbial community structure.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28488752</pmid><doi>10.1111/1462-2920.13788</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1462-2912 |
ispartof | Environmental microbiology, 2017-08, Vol.19 (8), p.3132-3151 |
issn | 1462-2912 1462-2920 |
language | eng |
recordid | cdi_proquest_miscellaneous_1899111243 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Above ground tanks Abundance Acetogenesis Ammonification Aquatic ecology Aquatic plants Archaea - classification Archaea - genetics Archaea - isolation & purification Bacteria Biogeochemistry Brazil Bromeliaceae - microbiology Canopies Communities Community structure Correlation Coverage Denitrification Detritus Ecological monitoring Ecology Fresh Water - microbiology Freshwater Freshwater lakes Functional groups Geochemistry Inland water environment Lake deposits Lake sediments Methanogenesis Methanogenic bacteria Microbial activity Microbiomes Microbiota Microorganisms Phototrophy Plant cover Plants (botany) Profiling Sediments Sequencing Soil Soil - chemistry Soil Microbiology Species Sulfates Tanks Taxonomy |
title | Functional structure of the bromeliad tank microbiome is strongly shaped by local geochemical conditions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T13%3A39%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20structure%20of%20the%20bromeliad%20tank%20microbiome%20is%20strongly%20shaped%20by%20local%20geochemical%20conditions&rft.jtitle=Environmental%20microbiology&rft.au=Louca,%20Stilianos&rft.date=2017-08&rft.volume=19&rft.issue=8&rft.spage=3132&rft.epage=3151&rft.pages=3132-3151&rft.issn=1462-2912&rft.eissn=1462-2920&rft_id=info:doi/10.1111/1462-2920.13788&rft_dat=%3Cproquest_cross%3E1929299630%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1929299630&rft_id=info:pmid/28488752&rfr_iscdi=true |