Functional structure of the bromeliad tank microbiome is strongly shaped by local geochemical conditions

Summary Phytotelmata in tank‐forming Bromeliaceae plants are regarded as potential miniature models for aquatic ecology, but detailed investigations of their microbial communities are rare. Hence, the biogeochemistry in bromeliad tanks remains poorly understood. Here we investigate the structure of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental microbiology 2017-08, Vol.19 (8), p.3132-3151
Hauptverfasser: Louca, Stilianos, Jacques, Saulo M. S., Pires, Aliny P. F., Leal, Juliana S., González, Angélica L., Doebeli, Michael, Farjalla, Vinicius F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3151
container_issue 8
container_start_page 3132
container_title Environmental microbiology
container_volume 19
creator Louca, Stilianos
Jacques, Saulo M. S.
Pires, Aliny P. F.
Leal, Juliana S.
González, Angélica L.
Doebeli, Michael
Farjalla, Vinicius F.
description Summary Phytotelmata in tank‐forming Bromeliaceae plants are regarded as potential miniature models for aquatic ecology, but detailed investigations of their microbial communities are rare. Hence, the biogeochemistry in bromeliad tanks remains poorly understood. Here we investigate the structure of bacterial and archaeal communities inhabiting the detritus within the tanks of two bromeliad species, Aechmea nudicaulis and Neoregelia cruenta, from a Brazilian sand dune forest. We used metagenomic sequencing for functional community profiling and 16S sequencing for taxonomic profiling. We estimated the correlation between functional groups and various environmental variables, and compared communities between bromeliad species. In all bromeliads, microbial communities spanned a metabolic network adapted to oxygen‐limited conditions, including all denitrification steps, ammonification, sulfate respiration, methanogenesis, reductive acetogenesis and anoxygenic phototrophy. Overall, CO2 reducers dominated in abundance over sulfate reducers, and anoxygenic phototrophs largely outnumbered oxygenic photoautotrophs. Functional community structure correlated strongly with environmental variables, between and within a single bromeliad species. Methanogens and reductive acetogens correlated with detrital volume and canopy coverage, and exhibited higher relative abundances in N. cruenta. A comparison of bromeliads to freshwater lake sediments and soil from around the world, revealed stark differences in terms of taxonomic as well as functional microbial community structure.
doi_str_mv 10.1111/1462-2920.13788
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1899111243</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1929299630</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3718-2253a991f3c2fe92fbe0940a0bfd81fdaf952706803f4ede4a7b80a1d053ce503</originalsourceid><addsrcrecordid>eNqFkT1PwzAQhi0EoqUwsyFLLCyl_kgae0RV-ZCKWGC2HOdMDUlc7ESo_x6HQgcWvPh8evxI9x5C55Rc03RmNJuzKZMsPXkhxAEa7zuH-5qyETqJ8Y0QWvCCHKMRE5kQRc7GaH3bt6ZzvtU1jl3oTdcHwN7ibg24DL6B2ukKd7p9x40zwZcu9bCLA-3b13qL41pvoMLlFtfeJM0reLOGBKfa-LZygz6eoiOr6whnP_cEvdwunxf309XT3cPiZjU1vKBiyljOtZTUcsMsSGZLIDIjmpS2EtRW2sqcFWQuCLcZVJDpohRE04rk3EBO-ARd7byb4D96iJ1qXDRQ17oF30dFRbJTyjKe0Ms_6JvvQ0oiUTJFKOWcD8LZjkrDxxjAqk1wjQ5bRYkalqCGmNUQufpeQvpx8ePtywaqPf-begLyHfDpatj-51PLx4ed-AvUWZHa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1929299630</pqid></control><display><type>article</type><title>Functional structure of the bromeliad tank microbiome is strongly shaped by local geochemical conditions</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Louca, Stilianos ; Jacques, Saulo M. S. ; Pires, Aliny P. F. ; Leal, Juliana S. ; González, Angélica L. ; Doebeli, Michael ; Farjalla, Vinicius F.</creator><creatorcontrib>Louca, Stilianos ; Jacques, Saulo M. S. ; Pires, Aliny P. F. ; Leal, Juliana S. ; González, Angélica L. ; Doebeli, Michael ; Farjalla, Vinicius F.</creatorcontrib><description>Summary Phytotelmata in tank‐forming Bromeliaceae plants are regarded as potential miniature models for aquatic ecology, but detailed investigations of their microbial communities are rare. Hence, the biogeochemistry in bromeliad tanks remains poorly understood. Here we investigate the structure of bacterial and archaeal communities inhabiting the detritus within the tanks of two bromeliad species, Aechmea nudicaulis and Neoregelia cruenta, from a Brazilian sand dune forest. We used metagenomic sequencing for functional community profiling and 16S sequencing for taxonomic profiling. We estimated the correlation between functional groups and various environmental variables, and compared communities between bromeliad species. In all bromeliads, microbial communities spanned a metabolic network adapted to oxygen‐limited conditions, including all denitrification steps, ammonification, sulfate respiration, methanogenesis, reductive acetogenesis and anoxygenic phototrophy. Overall, CO2 reducers dominated in abundance over sulfate reducers, and anoxygenic phototrophs largely outnumbered oxygenic photoautotrophs. Functional community structure correlated strongly with environmental variables, between and within a single bromeliad species. Methanogens and reductive acetogens correlated with detrital volume and canopy coverage, and exhibited higher relative abundances in N. cruenta. A comparison of bromeliads to freshwater lake sediments and soil from around the world, revealed stark differences in terms of taxonomic as well as functional microbial community structure.</description><identifier>ISSN: 1462-2912</identifier><identifier>EISSN: 1462-2920</identifier><identifier>DOI: 10.1111/1462-2920.13788</identifier><identifier>PMID: 28488752</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Above ground tanks ; Abundance ; Acetogenesis ; Ammonification ; Aquatic ecology ; Aquatic plants ; Archaea - classification ; Archaea - genetics ; Archaea - isolation &amp; purification ; Bacteria ; Biogeochemistry ; Brazil ; Bromeliaceae - microbiology ; Canopies ; Communities ; Community structure ; Correlation ; Coverage ; Denitrification ; Detritus ; Ecological monitoring ; Ecology ; Fresh Water - microbiology ; Freshwater ; Freshwater lakes ; Functional groups ; Geochemistry ; Inland water environment ; Lake deposits ; Lake sediments ; Methanogenesis ; Methanogenic bacteria ; Microbial activity ; Microbiomes ; Microbiota ; Microorganisms ; Phototrophy ; Plant cover ; Plants (botany) ; Profiling ; Sediments ; Sequencing ; Soil ; Soil - chemistry ; Soil Microbiology ; Species ; Sulfates ; Tanks ; Taxonomy</subject><ispartof>Environmental microbiology, 2017-08, Vol.19 (8), p.3132-3151</ispartof><rights>2017 Society for Applied Microbiology and John Wiley &amp; Sons Ltd</rights><rights>2017 Society for Applied Microbiology and John Wiley &amp; Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3718-2253a991f3c2fe92fbe0940a0bfd81fdaf952706803f4ede4a7b80a1d053ce503</citedby><cites>FETCH-LOGICAL-c3718-2253a991f3c2fe92fbe0940a0bfd81fdaf952706803f4ede4a7b80a1d053ce503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1462-2920.13788$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1462-2920.13788$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28488752$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Louca, Stilianos</creatorcontrib><creatorcontrib>Jacques, Saulo M. S.</creatorcontrib><creatorcontrib>Pires, Aliny P. F.</creatorcontrib><creatorcontrib>Leal, Juliana S.</creatorcontrib><creatorcontrib>González, Angélica L.</creatorcontrib><creatorcontrib>Doebeli, Michael</creatorcontrib><creatorcontrib>Farjalla, Vinicius F.</creatorcontrib><title>Functional structure of the bromeliad tank microbiome is strongly shaped by local geochemical conditions</title><title>Environmental microbiology</title><addtitle>Environ Microbiol</addtitle><description>Summary Phytotelmata in tank‐forming Bromeliaceae plants are regarded as potential miniature models for aquatic ecology, but detailed investigations of their microbial communities are rare. Hence, the biogeochemistry in bromeliad tanks remains poorly understood. Here we investigate the structure of bacterial and archaeal communities inhabiting the detritus within the tanks of two bromeliad species, Aechmea nudicaulis and Neoregelia cruenta, from a Brazilian sand dune forest. We used metagenomic sequencing for functional community profiling and 16S sequencing for taxonomic profiling. We estimated the correlation between functional groups and various environmental variables, and compared communities between bromeliad species. In all bromeliads, microbial communities spanned a metabolic network adapted to oxygen‐limited conditions, including all denitrification steps, ammonification, sulfate respiration, methanogenesis, reductive acetogenesis and anoxygenic phototrophy. Overall, CO2 reducers dominated in abundance over sulfate reducers, and anoxygenic phototrophs largely outnumbered oxygenic photoautotrophs. Functional community structure correlated strongly with environmental variables, between and within a single bromeliad species. Methanogens and reductive acetogens correlated with detrital volume and canopy coverage, and exhibited higher relative abundances in N. cruenta. A comparison of bromeliads to freshwater lake sediments and soil from around the world, revealed stark differences in terms of taxonomic as well as functional microbial community structure.</description><subject>Above ground tanks</subject><subject>Abundance</subject><subject>Acetogenesis</subject><subject>Ammonification</subject><subject>Aquatic ecology</subject><subject>Aquatic plants</subject><subject>Archaea - classification</subject><subject>Archaea - genetics</subject><subject>Archaea - isolation &amp; purification</subject><subject>Bacteria</subject><subject>Biogeochemistry</subject><subject>Brazil</subject><subject>Bromeliaceae - microbiology</subject><subject>Canopies</subject><subject>Communities</subject><subject>Community structure</subject><subject>Correlation</subject><subject>Coverage</subject><subject>Denitrification</subject><subject>Detritus</subject><subject>Ecological monitoring</subject><subject>Ecology</subject><subject>Fresh Water - microbiology</subject><subject>Freshwater</subject><subject>Freshwater lakes</subject><subject>Functional groups</subject><subject>Geochemistry</subject><subject>Inland water environment</subject><subject>Lake deposits</subject><subject>Lake sediments</subject><subject>Methanogenesis</subject><subject>Methanogenic bacteria</subject><subject>Microbial activity</subject><subject>Microbiomes</subject><subject>Microbiota</subject><subject>Microorganisms</subject><subject>Phototrophy</subject><subject>Plant cover</subject><subject>Plants (botany)</subject><subject>Profiling</subject><subject>Sediments</subject><subject>Sequencing</subject><subject>Soil</subject><subject>Soil - chemistry</subject><subject>Soil Microbiology</subject><subject>Species</subject><subject>Sulfates</subject><subject>Tanks</subject><subject>Taxonomy</subject><issn>1462-2912</issn><issn>1462-2920</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkT1PwzAQhi0EoqUwsyFLLCyl_kgae0RV-ZCKWGC2HOdMDUlc7ESo_x6HQgcWvPh8evxI9x5C55Rc03RmNJuzKZMsPXkhxAEa7zuH-5qyETqJ8Y0QWvCCHKMRE5kQRc7GaH3bt6ZzvtU1jl3oTdcHwN7ibg24DL6B2ukKd7p9x40zwZcu9bCLA-3b13qL41pvoMLlFtfeJM0reLOGBKfa-LZygz6eoiOr6whnP_cEvdwunxf309XT3cPiZjU1vKBiyljOtZTUcsMsSGZLIDIjmpS2EtRW2sqcFWQuCLcZVJDpohRE04rk3EBO-ARd7byb4D96iJ1qXDRQ17oF30dFRbJTyjKe0Ms_6JvvQ0oiUTJFKOWcD8LZjkrDxxjAqk1wjQ5bRYkalqCGmNUQufpeQvpx8ePtywaqPf-begLyHfDpatj-51PLx4ed-AvUWZHa</recordid><startdate>201708</startdate><enddate>201708</enddate><creator>Louca, Stilianos</creator><creator>Jacques, Saulo M. S.</creator><creator>Pires, Aliny P. F.</creator><creator>Leal, Juliana S.</creator><creator>González, Angélica L.</creator><creator>Doebeli, Michael</creator><creator>Farjalla, Vinicius F.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7ST</scope><scope>7T7</scope><scope>7TN</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>201708</creationdate><title>Functional structure of the bromeliad tank microbiome is strongly shaped by local geochemical conditions</title><author>Louca, Stilianos ; Jacques, Saulo M. S. ; Pires, Aliny P. F. ; Leal, Juliana S. ; González, Angélica L. ; Doebeli, Michael ; Farjalla, Vinicius F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3718-2253a991f3c2fe92fbe0940a0bfd81fdaf952706803f4ede4a7b80a1d053ce503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Above ground tanks</topic><topic>Abundance</topic><topic>Acetogenesis</topic><topic>Ammonification</topic><topic>Aquatic ecology</topic><topic>Aquatic plants</topic><topic>Archaea - classification</topic><topic>Archaea - genetics</topic><topic>Archaea - isolation &amp; purification</topic><topic>Bacteria</topic><topic>Biogeochemistry</topic><topic>Brazil</topic><topic>Bromeliaceae - microbiology</topic><topic>Canopies</topic><topic>Communities</topic><topic>Community structure</topic><topic>Correlation</topic><topic>Coverage</topic><topic>Denitrification</topic><topic>Detritus</topic><topic>Ecological monitoring</topic><topic>Ecology</topic><topic>Fresh Water - microbiology</topic><topic>Freshwater</topic><topic>Freshwater lakes</topic><topic>Functional groups</topic><topic>Geochemistry</topic><topic>Inland water environment</topic><topic>Lake deposits</topic><topic>Lake sediments</topic><topic>Methanogenesis</topic><topic>Methanogenic bacteria</topic><topic>Microbial activity</topic><topic>Microbiomes</topic><topic>Microbiota</topic><topic>Microorganisms</topic><topic>Phototrophy</topic><topic>Plant cover</topic><topic>Plants (botany)</topic><topic>Profiling</topic><topic>Sediments</topic><topic>Sequencing</topic><topic>Soil</topic><topic>Soil - chemistry</topic><topic>Soil Microbiology</topic><topic>Species</topic><topic>Sulfates</topic><topic>Tanks</topic><topic>Taxonomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Louca, Stilianos</creatorcontrib><creatorcontrib>Jacques, Saulo M. S.</creatorcontrib><creatorcontrib>Pires, Aliny P. F.</creatorcontrib><creatorcontrib>Leal, Juliana S.</creatorcontrib><creatorcontrib>González, Angélica L.</creatorcontrib><creatorcontrib>Doebeli, Michael</creatorcontrib><creatorcontrib>Farjalla, Vinicius F.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Louca, Stilianos</au><au>Jacques, Saulo M. S.</au><au>Pires, Aliny P. F.</au><au>Leal, Juliana S.</au><au>González, Angélica L.</au><au>Doebeli, Michael</au><au>Farjalla, Vinicius F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional structure of the bromeliad tank microbiome is strongly shaped by local geochemical conditions</atitle><jtitle>Environmental microbiology</jtitle><addtitle>Environ Microbiol</addtitle><date>2017-08</date><risdate>2017</risdate><volume>19</volume><issue>8</issue><spage>3132</spage><epage>3151</epage><pages>3132-3151</pages><issn>1462-2912</issn><eissn>1462-2920</eissn><abstract>Summary Phytotelmata in tank‐forming Bromeliaceae plants are regarded as potential miniature models for aquatic ecology, but detailed investigations of their microbial communities are rare. Hence, the biogeochemistry in bromeliad tanks remains poorly understood. Here we investigate the structure of bacterial and archaeal communities inhabiting the detritus within the tanks of two bromeliad species, Aechmea nudicaulis and Neoregelia cruenta, from a Brazilian sand dune forest. We used metagenomic sequencing for functional community profiling and 16S sequencing for taxonomic profiling. We estimated the correlation between functional groups and various environmental variables, and compared communities between bromeliad species. In all bromeliads, microbial communities spanned a metabolic network adapted to oxygen‐limited conditions, including all denitrification steps, ammonification, sulfate respiration, methanogenesis, reductive acetogenesis and anoxygenic phototrophy. Overall, CO2 reducers dominated in abundance over sulfate reducers, and anoxygenic phototrophs largely outnumbered oxygenic photoautotrophs. Functional community structure correlated strongly with environmental variables, between and within a single bromeliad species. Methanogens and reductive acetogens correlated with detrital volume and canopy coverage, and exhibited higher relative abundances in N. cruenta. A comparison of bromeliads to freshwater lake sediments and soil from around the world, revealed stark differences in terms of taxonomic as well as functional microbial community structure.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28488752</pmid><doi>10.1111/1462-2920.13788</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1462-2912
ispartof Environmental microbiology, 2017-08, Vol.19 (8), p.3132-3151
issn 1462-2912
1462-2920
language eng
recordid cdi_proquest_miscellaneous_1899111243
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Above ground tanks
Abundance
Acetogenesis
Ammonification
Aquatic ecology
Aquatic plants
Archaea - classification
Archaea - genetics
Archaea - isolation & purification
Bacteria
Biogeochemistry
Brazil
Bromeliaceae - microbiology
Canopies
Communities
Community structure
Correlation
Coverage
Denitrification
Detritus
Ecological monitoring
Ecology
Fresh Water - microbiology
Freshwater
Freshwater lakes
Functional groups
Geochemistry
Inland water environment
Lake deposits
Lake sediments
Methanogenesis
Methanogenic bacteria
Microbial activity
Microbiomes
Microbiota
Microorganisms
Phototrophy
Plant cover
Plants (botany)
Profiling
Sediments
Sequencing
Soil
Soil - chemistry
Soil Microbiology
Species
Sulfates
Tanks
Taxonomy
title Functional structure of the bromeliad tank microbiome is strongly shaped by local geochemical conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T13%3A39%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20structure%20of%20the%20bromeliad%20tank%20microbiome%20is%20strongly%20shaped%20by%20local%20geochemical%20conditions&rft.jtitle=Environmental%20microbiology&rft.au=Louca,%20Stilianos&rft.date=2017-08&rft.volume=19&rft.issue=8&rft.spage=3132&rft.epage=3151&rft.pages=3132-3151&rft.issn=1462-2912&rft.eissn=1462-2920&rft_id=info:doi/10.1111/1462-2920.13788&rft_dat=%3Cproquest_cross%3E1929299630%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1929299630&rft_id=info:pmid/28488752&rfr_iscdi=true