An Optically Modulated Self-Assembled Resonance Energy Transfer Pass Gate

We demonstrate an optically controlled molecular-scale pass gate that uses the photoinduced dark states of fluorescent molecules to modulate the flow of excitons. The device consists of four fluorophores spatially arranged on a self-assembled DNA nanostructure. Together, they form a resonance energy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2017-06, Vol.17 (6), p.3775-3781
Hauptverfasser: LaBoda, Craig D, Lebeck, Alvin R, Dwyer, Chris L
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3781
container_issue 6
container_start_page 3775
container_title Nano letters
container_volume 17
creator LaBoda, Craig D
Lebeck, Alvin R
Dwyer, Chris L
description We demonstrate an optically controlled molecular-scale pass gate that uses the photoinduced dark states of fluorescent molecules to modulate the flow of excitons. The device consists of four fluorophores spatially arranged on a self-assembled DNA nanostructure. Together, they form a resonance energy transfer (RET) network resembling a standard transistor with a source, channel, drain, and gate. When the gate fluorophore is directly excited, the device is toggled on. Excitons flow freely from the source to the drain, producing strong output fluorescence. Without this excitation, exciton flow through the device is hindered by absorbing paths along the way, resulting in weak output fluorescence. In this Letter, we describe the design and fabrication of the pass gate. We perform a steady-state analysis revealing that the on/off fluorescence ratio for this particular implementation is ∼8.7. To demonstrate dynamic modulation of the pass gate, we toggle the gate excitation on and off and measure the corresponding change in output fluorescence. We characterize the rise and fall times of these transitions, showing that they are faster and/or more easily achieved than other methods of RET network modulation. The pass gate is the first dynamic RET-based logic gate exclusively modulated by dark states and serves as a proof-of-concept device for building more complex RET systems in the future.
doi_str_mv 10.1021/acs.nanolett.7b01112
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1899107709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1899107709</sourcerecordid><originalsourceid>FETCH-LOGICAL-a414t-dedd8020728084cce1697aec4695e7d4cfe1727708daaca49d3341687283aa193</originalsourceid><addsrcrecordid>eNp9kE1PAjEQhhujEUT_gTF79LLY7pZteyQEkQSDUTw3QztrIN1dbHcP_HtL-Dh6mk7yvO-kDyGPjA4ZzdgLmDCsoW4ctu1QrCljLLsifTbKaVoolV1f3pL3yF0IW0qpykf0lvQyyaWUgvfJfFwny127MeDcPnlvbOegRZt8oSvTcQhYrV1cPzE08ZjBZFqj_9knKw91KNEnHxBCMouZe3JTggv4cJoD8v06XU3e0sVyNp-MFylwxtvUorWSZlRkkkpuDLJCCUDDCzVCYbkpkYlMCCotgAGubJ5zVsjI5wBM5QPyfOzd-ea3w9DqahMMOgc1Nl3QTCrFaCw4oPyIGt-E4LHUO7-pwO81o_ogUUeJ-ixRnyTG2NPpQreu0F5CZ2sRoEfgEN82na_jh__v_APr2IC9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899107709</pqid></control><display><type>article</type><title>An Optically Modulated Self-Assembled Resonance Energy Transfer Pass Gate</title><source>ACS Publications</source><creator>LaBoda, Craig D ; Lebeck, Alvin R ; Dwyer, Chris L</creator><creatorcontrib>LaBoda, Craig D ; Lebeck, Alvin R ; Dwyer, Chris L</creatorcontrib><description>We demonstrate an optically controlled molecular-scale pass gate that uses the photoinduced dark states of fluorescent molecules to modulate the flow of excitons. The device consists of four fluorophores spatially arranged on a self-assembled DNA nanostructure. Together, they form a resonance energy transfer (RET) network resembling a standard transistor with a source, channel, drain, and gate. When the gate fluorophore is directly excited, the device is toggled on. Excitons flow freely from the source to the drain, producing strong output fluorescence. Without this excitation, exciton flow through the device is hindered by absorbing paths along the way, resulting in weak output fluorescence. In this Letter, we describe the design and fabrication of the pass gate. We perform a steady-state analysis revealing that the on/off fluorescence ratio for this particular implementation is ∼8.7. To demonstrate dynamic modulation of the pass gate, we toggle the gate excitation on and off and measure the corresponding change in output fluorescence. We characterize the rise and fall times of these transitions, showing that they are faster and/or more easily achieved than other methods of RET network modulation. The pass gate is the first dynamic RET-based logic gate exclusively modulated by dark states and serves as a proof-of-concept device for building more complex RET systems in the future.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.7b01112</identifier><identifier>PMID: 28488874</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Nano letters, 2017-06, Vol.17 (6), p.3775-3781</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a414t-dedd8020728084cce1697aec4695e7d4cfe1727708daaca49d3341687283aa193</citedby><cites>FETCH-LOGICAL-a414t-dedd8020728084cce1697aec4695e7d4cfe1727708daaca49d3341687283aa193</cites><orcidid>0000-0002-4292-1233</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.7b01112$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.7b01112$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27081,27929,27930,56743,56793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28488874$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>LaBoda, Craig D</creatorcontrib><creatorcontrib>Lebeck, Alvin R</creatorcontrib><creatorcontrib>Dwyer, Chris L</creatorcontrib><title>An Optically Modulated Self-Assembled Resonance Energy Transfer Pass Gate</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>We demonstrate an optically controlled molecular-scale pass gate that uses the photoinduced dark states of fluorescent molecules to modulate the flow of excitons. The device consists of four fluorophores spatially arranged on a self-assembled DNA nanostructure. Together, they form a resonance energy transfer (RET) network resembling a standard transistor with a source, channel, drain, and gate. When the gate fluorophore is directly excited, the device is toggled on. Excitons flow freely from the source to the drain, producing strong output fluorescence. Without this excitation, exciton flow through the device is hindered by absorbing paths along the way, resulting in weak output fluorescence. In this Letter, we describe the design and fabrication of the pass gate. We perform a steady-state analysis revealing that the on/off fluorescence ratio for this particular implementation is ∼8.7. To demonstrate dynamic modulation of the pass gate, we toggle the gate excitation on and off and measure the corresponding change in output fluorescence. We characterize the rise and fall times of these transitions, showing that they are faster and/or more easily achieved than other methods of RET network modulation. The pass gate is the first dynamic RET-based logic gate exclusively modulated by dark states and serves as a proof-of-concept device for building more complex RET systems in the future.</description><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PAjEQhhujEUT_gTF79LLY7pZteyQEkQSDUTw3QztrIN1dbHcP_HtL-Dh6mk7yvO-kDyGPjA4ZzdgLmDCsoW4ctu1QrCljLLsifTbKaVoolV1f3pL3yF0IW0qpykf0lvQyyaWUgvfJfFwny127MeDcPnlvbOegRZt8oSvTcQhYrV1cPzE08ZjBZFqj_9knKw91KNEnHxBCMouZe3JTggv4cJoD8v06XU3e0sVyNp-MFylwxtvUorWSZlRkkkpuDLJCCUDDCzVCYbkpkYlMCCotgAGubJ5zVsjI5wBM5QPyfOzd-ea3w9DqahMMOgc1Nl3QTCrFaCw4oPyIGt-E4LHUO7-pwO81o_ogUUeJ-ixRnyTG2NPpQreu0F5CZ2sRoEfgEN82na_jh__v_APr2IC9</recordid><startdate>20170614</startdate><enddate>20170614</enddate><creator>LaBoda, Craig D</creator><creator>Lebeck, Alvin R</creator><creator>Dwyer, Chris L</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4292-1233</orcidid></search><sort><creationdate>20170614</creationdate><title>An Optically Modulated Self-Assembled Resonance Energy Transfer Pass Gate</title><author>LaBoda, Craig D ; Lebeck, Alvin R ; Dwyer, Chris L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a414t-dedd8020728084cce1697aec4695e7d4cfe1727708daaca49d3341687283aa193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LaBoda, Craig D</creatorcontrib><creatorcontrib>Lebeck, Alvin R</creatorcontrib><creatorcontrib>Dwyer, Chris L</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LaBoda, Craig D</au><au>Lebeck, Alvin R</au><au>Dwyer, Chris L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Optically Modulated Self-Assembled Resonance Energy Transfer Pass Gate</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2017-06-14</date><risdate>2017</risdate><volume>17</volume><issue>6</issue><spage>3775</spage><epage>3781</epage><pages>3775-3781</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>We demonstrate an optically controlled molecular-scale pass gate that uses the photoinduced dark states of fluorescent molecules to modulate the flow of excitons. The device consists of four fluorophores spatially arranged on a self-assembled DNA nanostructure. Together, they form a resonance energy transfer (RET) network resembling a standard transistor with a source, channel, drain, and gate. When the gate fluorophore is directly excited, the device is toggled on. Excitons flow freely from the source to the drain, producing strong output fluorescence. Without this excitation, exciton flow through the device is hindered by absorbing paths along the way, resulting in weak output fluorescence. In this Letter, we describe the design and fabrication of the pass gate. We perform a steady-state analysis revealing that the on/off fluorescence ratio for this particular implementation is ∼8.7. To demonstrate dynamic modulation of the pass gate, we toggle the gate excitation on and off and measure the corresponding change in output fluorescence. We characterize the rise and fall times of these transitions, showing that they are faster and/or more easily achieved than other methods of RET network modulation. The pass gate is the first dynamic RET-based logic gate exclusively modulated by dark states and serves as a proof-of-concept device for building more complex RET systems in the future.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28488874</pmid><doi>10.1021/acs.nanolett.7b01112</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-4292-1233</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2017-06, Vol.17 (6), p.3775-3781
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_1899107709
source ACS Publications
title An Optically Modulated Self-Assembled Resonance Energy Transfer Pass Gate
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T13%3A43%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Optically%20Modulated%20Self-Assembled%20Resonance%20Energy%20Transfer%20Pass%20Gate&rft.jtitle=Nano%20letters&rft.au=LaBoda,%20Craig%20D&rft.date=2017-06-14&rft.volume=17&rft.issue=6&rft.spage=3775&rft.epage=3781&rft.pages=3775-3781&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.7b01112&rft_dat=%3Cproquest_cross%3E1899107709%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899107709&rft_id=info:pmid/28488874&rfr_iscdi=true