An Optically Modulated Self-Assembled Resonance Energy Transfer Pass Gate
We demonstrate an optically controlled molecular-scale pass gate that uses the photoinduced dark states of fluorescent molecules to modulate the flow of excitons. The device consists of four fluorophores spatially arranged on a self-assembled DNA nanostructure. Together, they form a resonance energy...
Gespeichert in:
Veröffentlicht in: | Nano letters 2017-06, Vol.17 (6), p.3775-3781 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3781 |
---|---|
container_issue | 6 |
container_start_page | 3775 |
container_title | Nano letters |
container_volume | 17 |
creator | LaBoda, Craig D Lebeck, Alvin R Dwyer, Chris L |
description | We demonstrate an optically controlled molecular-scale pass gate that uses the photoinduced dark states of fluorescent molecules to modulate the flow of excitons. The device consists of four fluorophores spatially arranged on a self-assembled DNA nanostructure. Together, they form a resonance energy transfer (RET) network resembling a standard transistor with a source, channel, drain, and gate. When the gate fluorophore is directly excited, the device is toggled on. Excitons flow freely from the source to the drain, producing strong output fluorescence. Without this excitation, exciton flow through the device is hindered by absorbing paths along the way, resulting in weak output fluorescence. In this Letter, we describe the design and fabrication of the pass gate. We perform a steady-state analysis revealing that the on/off fluorescence ratio for this particular implementation is ∼8.7. To demonstrate dynamic modulation of the pass gate, we toggle the gate excitation on and off and measure the corresponding change in output fluorescence. We characterize the rise and fall times of these transitions, showing that they are faster and/or more easily achieved than other methods of RET network modulation. The pass gate is the first dynamic RET-based logic gate exclusively modulated by dark states and serves as a proof-of-concept device for building more complex RET systems in the future. |
doi_str_mv | 10.1021/acs.nanolett.7b01112 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1899107709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1899107709</sourcerecordid><originalsourceid>FETCH-LOGICAL-a414t-dedd8020728084cce1697aec4695e7d4cfe1727708daaca49d3341687283aa193</originalsourceid><addsrcrecordid>eNp9kE1PAjEQhhujEUT_gTF79LLY7pZteyQEkQSDUTw3QztrIN1dbHcP_HtL-Dh6mk7yvO-kDyGPjA4ZzdgLmDCsoW4ctu1QrCljLLsifTbKaVoolV1f3pL3yF0IW0qpykf0lvQyyaWUgvfJfFwny127MeDcPnlvbOegRZt8oSvTcQhYrV1cPzE08ZjBZFqj_9knKw91KNEnHxBCMouZe3JTggv4cJoD8v06XU3e0sVyNp-MFylwxtvUorWSZlRkkkpuDLJCCUDDCzVCYbkpkYlMCCotgAGubJ5zVsjI5wBM5QPyfOzd-ea3w9DqahMMOgc1Nl3QTCrFaCw4oPyIGt-E4LHUO7-pwO81o_ogUUeJ-ixRnyTG2NPpQreu0F5CZ2sRoEfgEN82na_jh__v_APr2IC9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899107709</pqid></control><display><type>article</type><title>An Optically Modulated Self-Assembled Resonance Energy Transfer Pass Gate</title><source>ACS Publications</source><creator>LaBoda, Craig D ; Lebeck, Alvin R ; Dwyer, Chris L</creator><creatorcontrib>LaBoda, Craig D ; Lebeck, Alvin R ; Dwyer, Chris L</creatorcontrib><description>We demonstrate an optically controlled molecular-scale pass gate that uses the photoinduced dark states of fluorescent molecules to modulate the flow of excitons. The device consists of four fluorophores spatially arranged on a self-assembled DNA nanostructure. Together, they form a resonance energy transfer (RET) network resembling a standard transistor with a source, channel, drain, and gate. When the gate fluorophore is directly excited, the device is toggled on. Excitons flow freely from the source to the drain, producing strong output fluorescence. Without this excitation, exciton flow through the device is hindered by absorbing paths along the way, resulting in weak output fluorescence. In this Letter, we describe the design and fabrication of the pass gate. We perform a steady-state analysis revealing that the on/off fluorescence ratio for this particular implementation is ∼8.7. To demonstrate dynamic modulation of the pass gate, we toggle the gate excitation on and off and measure the corresponding change in output fluorescence. We characterize the rise and fall times of these transitions, showing that they are faster and/or more easily achieved than other methods of RET network modulation. The pass gate is the first dynamic RET-based logic gate exclusively modulated by dark states and serves as a proof-of-concept device for building more complex RET systems in the future.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.7b01112</identifier><identifier>PMID: 28488874</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Nano letters, 2017-06, Vol.17 (6), p.3775-3781</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a414t-dedd8020728084cce1697aec4695e7d4cfe1727708daaca49d3341687283aa193</citedby><cites>FETCH-LOGICAL-a414t-dedd8020728084cce1697aec4695e7d4cfe1727708daaca49d3341687283aa193</cites><orcidid>0000-0002-4292-1233</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.7b01112$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.7b01112$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27081,27929,27930,56743,56793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28488874$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>LaBoda, Craig D</creatorcontrib><creatorcontrib>Lebeck, Alvin R</creatorcontrib><creatorcontrib>Dwyer, Chris L</creatorcontrib><title>An Optically Modulated Self-Assembled Resonance Energy Transfer Pass Gate</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>We demonstrate an optically controlled molecular-scale pass gate that uses the photoinduced dark states of fluorescent molecules to modulate the flow of excitons. The device consists of four fluorophores spatially arranged on a self-assembled DNA nanostructure. Together, they form a resonance energy transfer (RET) network resembling a standard transistor with a source, channel, drain, and gate. When the gate fluorophore is directly excited, the device is toggled on. Excitons flow freely from the source to the drain, producing strong output fluorescence. Without this excitation, exciton flow through the device is hindered by absorbing paths along the way, resulting in weak output fluorescence. In this Letter, we describe the design and fabrication of the pass gate. We perform a steady-state analysis revealing that the on/off fluorescence ratio for this particular implementation is ∼8.7. To demonstrate dynamic modulation of the pass gate, we toggle the gate excitation on and off and measure the corresponding change in output fluorescence. We characterize the rise and fall times of these transitions, showing that they are faster and/or more easily achieved than other methods of RET network modulation. The pass gate is the first dynamic RET-based logic gate exclusively modulated by dark states and serves as a proof-of-concept device for building more complex RET systems in the future.</description><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PAjEQhhujEUT_gTF79LLY7pZteyQEkQSDUTw3QztrIN1dbHcP_HtL-Dh6mk7yvO-kDyGPjA4ZzdgLmDCsoW4ctu1QrCljLLsifTbKaVoolV1f3pL3yF0IW0qpykf0lvQyyaWUgvfJfFwny127MeDcPnlvbOegRZt8oSvTcQhYrV1cPzE08ZjBZFqj_9knKw91KNEnHxBCMouZe3JTggv4cJoD8v06XU3e0sVyNp-MFylwxtvUorWSZlRkkkpuDLJCCUDDCzVCYbkpkYlMCCotgAGubJ5zVsjI5wBM5QPyfOzd-ea3w9DqahMMOgc1Nl3QTCrFaCw4oPyIGt-E4LHUO7-pwO81o_ogUUeJ-ixRnyTG2NPpQreu0F5CZ2sRoEfgEN82na_jh__v_APr2IC9</recordid><startdate>20170614</startdate><enddate>20170614</enddate><creator>LaBoda, Craig D</creator><creator>Lebeck, Alvin R</creator><creator>Dwyer, Chris L</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4292-1233</orcidid></search><sort><creationdate>20170614</creationdate><title>An Optically Modulated Self-Assembled Resonance Energy Transfer Pass Gate</title><author>LaBoda, Craig D ; Lebeck, Alvin R ; Dwyer, Chris L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a414t-dedd8020728084cce1697aec4695e7d4cfe1727708daaca49d3341687283aa193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LaBoda, Craig D</creatorcontrib><creatorcontrib>Lebeck, Alvin R</creatorcontrib><creatorcontrib>Dwyer, Chris L</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LaBoda, Craig D</au><au>Lebeck, Alvin R</au><au>Dwyer, Chris L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Optically Modulated Self-Assembled Resonance Energy Transfer Pass Gate</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2017-06-14</date><risdate>2017</risdate><volume>17</volume><issue>6</issue><spage>3775</spage><epage>3781</epage><pages>3775-3781</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>We demonstrate an optically controlled molecular-scale pass gate that uses the photoinduced dark states of fluorescent molecules to modulate the flow of excitons. The device consists of four fluorophores spatially arranged on a self-assembled DNA nanostructure. Together, they form a resonance energy transfer (RET) network resembling a standard transistor with a source, channel, drain, and gate. When the gate fluorophore is directly excited, the device is toggled on. Excitons flow freely from the source to the drain, producing strong output fluorescence. Without this excitation, exciton flow through the device is hindered by absorbing paths along the way, resulting in weak output fluorescence. In this Letter, we describe the design and fabrication of the pass gate. We perform a steady-state analysis revealing that the on/off fluorescence ratio for this particular implementation is ∼8.7. To demonstrate dynamic modulation of the pass gate, we toggle the gate excitation on and off and measure the corresponding change in output fluorescence. We characterize the rise and fall times of these transitions, showing that they are faster and/or more easily achieved than other methods of RET network modulation. The pass gate is the first dynamic RET-based logic gate exclusively modulated by dark states and serves as a proof-of-concept device for building more complex RET systems in the future.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28488874</pmid><doi>10.1021/acs.nanolett.7b01112</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-4292-1233</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2017-06, Vol.17 (6), p.3775-3781 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_proquest_miscellaneous_1899107709 |
source | ACS Publications |
title | An Optically Modulated Self-Assembled Resonance Energy Transfer Pass Gate |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T13%3A43%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Optically%20Modulated%20Self-Assembled%20Resonance%20Energy%20Transfer%20Pass%20Gate&rft.jtitle=Nano%20letters&rft.au=LaBoda,%20Craig%20D&rft.date=2017-06-14&rft.volume=17&rft.issue=6&rft.spage=3775&rft.epage=3781&rft.pages=3775-3781&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.7b01112&rft_dat=%3Cproquest_cross%3E1899107709%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899107709&rft_id=info:pmid/28488874&rfr_iscdi=true |