A novel soft sensor approach for estimating individual biomass in mixed cultures
Due to many advantages associated with mixed cultures, their application in biotechnology has expanded rapidly in recent years. At the same time, many challenges remain for effective mixed culture applications. One obstacle is how to efficiently and accurately monitor the individual cell populations...
Gespeichert in:
Veröffentlicht in: | Biotechnology progress 2017-03, Vol.33 (2), p.347-354 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 354 |
---|---|
container_issue | 2 |
container_start_page | 347 |
container_title | Biotechnology progress |
container_volume | 33 |
creator | Stone, Kyle A. Shah, Devarshi Kim, Min Hea Roberts, Nathan R. M. He, Q. Peter Wang, Jin |
description | Due to many advantages associated with mixed cultures, their application in biotechnology has expanded rapidly in recent years. At the same time, many challenges remain for effective mixed culture applications. One obstacle is how to efficiently and accurately monitor the individual cell populations. Current approaches on individual cell mass quantification are suitable for off‐line, infrequent characterization. In this study, we propose a fast and accurate “soft sensor” approach for estimating individual cell concentrations in mixed cultures. The proposed approach utilizes optical density scanning spectrum of a mixed culture sample measured by a spectrophotometer over a range of wavelengths. A multivariate linear regression method, partial least squares or PLS, is applied to correlate individual cell concentrations to the spectrum. Three experimental case studies are used to examine the performance of the proposed soft sensor approach. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:347–354, 2017 |
doi_str_mv | 10.1002/btpr.2453 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1897385569</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1897385569</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4583-4be21f890c221e480421ba3a0019da5bb8692fff4be931c67ab29b8a0dc1b6483</originalsourceid><addsrcrecordid>eNqN0ctKAzEUBuAgiq3VhS8gATe6mHpymZlkWYs3ECxS10Myk9HIXGoyU-3bm9rqQhBchYSPn5PzI3RMYEwA6IXuFm5Mecx20JDEFKIEGNtFQ5HGSZRKJgbowPtXABCQ0H00oILyVEo-RLMJbtqlqbBvyw570_jWYbVYuFblL7gMF-M7W6vONs_YNoVd2qJXFda2rZX34QnX9sMUOO-rrnfGH6K9UlXeHG3PEXq6vppPb6P7h5u76eQ-ynksWMS1oaQUEnJKieECOCVaMQVAZKFirUUiaVmWwUlG8iRVmkotFBQ50QkXbITONrlh1Lc-DJnV1uemqlRj2t5nRMiUiThO5D9oyjgwTpNAT3_R17Z3TfjIOpBQAQzSoM43Knet986U2cKFHblVRiBbN5KtG8nWjQR7sk3sdW2KH_ldQQAXG_BuK7P6Oym7nM8evyI_AQUzlOM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1891280307</pqid></control><display><type>article</type><title>A novel soft sensor approach for estimating individual biomass in mixed cultures</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Stone, Kyle A. ; Shah, Devarshi ; Kim, Min Hea ; Roberts, Nathan R. M. ; He, Q. Peter ; Wang, Jin</creator><creatorcontrib>Stone, Kyle A. ; Shah, Devarshi ; Kim, Min Hea ; Roberts, Nathan R. M. ; He, Q. Peter ; Wang, Jin</creatorcontrib><description>Due to many advantages associated with mixed cultures, their application in biotechnology has expanded rapidly in recent years. At the same time, many challenges remain for effective mixed culture applications. One obstacle is how to efficiently and accurately monitor the individual cell populations. Current approaches on individual cell mass quantification are suitable for off‐line, infrequent characterization. In this study, we propose a fast and accurate “soft sensor” approach for estimating individual cell concentrations in mixed cultures. The proposed approach utilizes optical density scanning spectrum of a mixed culture sample measured by a spectrophotometer over a range of wavelengths. A multivariate linear regression method, partial least squares or PLS, is applied to correlate individual cell concentrations to the spectrum. Three experimental case studies are used to examine the performance of the proposed soft sensor approach. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:347–354, 2017</description><identifier>ISSN: 8756-7938</identifier><identifier>EISSN: 1520-6033</identifier><identifier>DOI: 10.1002/btpr.2453</identifier><identifier>PMID: 28247994</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Biomass ; Biosensing Techniques - methods ; Biotechnology ; Cell Count - methods ; characterization ; coculture ; Coculture Techniques - methods ; Escherichia coli - cytology ; mixed culture ; Reproducibility of Results ; Saccharomyces cerevisiae - cytology ; Sensitivity and Specificity ; soft sensor ; spectrophotometry ; Spectrophotometry - methods ; Wavelengths</subject><ispartof>Biotechnology progress, 2017-03, Vol.33 (2), p.347-354</ispartof><rights>2017 American Institute of Chemical Engineers</rights><rights>2017 American Institute of Chemical Engineers.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4583-4be21f890c221e480421ba3a0019da5bb8692fff4be931c67ab29b8a0dc1b6483</citedby><cites>FETCH-LOGICAL-c4583-4be21f890c221e480421ba3a0019da5bb8692fff4be931c67ab29b8a0dc1b6483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbtpr.2453$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbtpr.2453$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27928,27929,45578,45579</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28247994$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stone, Kyle A.</creatorcontrib><creatorcontrib>Shah, Devarshi</creatorcontrib><creatorcontrib>Kim, Min Hea</creatorcontrib><creatorcontrib>Roberts, Nathan R. M.</creatorcontrib><creatorcontrib>He, Q. Peter</creatorcontrib><creatorcontrib>Wang, Jin</creatorcontrib><title>A novel soft sensor approach for estimating individual biomass in mixed cultures</title><title>Biotechnology progress</title><addtitle>Biotechnol Prog</addtitle><description>Due to many advantages associated with mixed cultures, their application in biotechnology has expanded rapidly in recent years. At the same time, many challenges remain for effective mixed culture applications. One obstacle is how to efficiently and accurately monitor the individual cell populations. Current approaches on individual cell mass quantification are suitable for off‐line, infrequent characterization. In this study, we propose a fast and accurate “soft sensor” approach for estimating individual cell concentrations in mixed cultures. The proposed approach utilizes optical density scanning spectrum of a mixed culture sample measured by a spectrophotometer over a range of wavelengths. A multivariate linear regression method, partial least squares or PLS, is applied to correlate individual cell concentrations to the spectrum. Three experimental case studies are used to examine the performance of the proposed soft sensor approach. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:347–354, 2017</description><subject>Algorithms</subject><subject>Biomass</subject><subject>Biosensing Techniques - methods</subject><subject>Biotechnology</subject><subject>Cell Count - methods</subject><subject>characterization</subject><subject>coculture</subject><subject>Coculture Techniques - methods</subject><subject>Escherichia coli - cytology</subject><subject>mixed culture</subject><subject>Reproducibility of Results</subject><subject>Saccharomyces cerevisiae - cytology</subject><subject>Sensitivity and Specificity</subject><subject>soft sensor</subject><subject>spectrophotometry</subject><subject>Spectrophotometry - methods</subject><subject>Wavelengths</subject><issn>8756-7938</issn><issn>1520-6033</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0ctKAzEUBuAgiq3VhS8gATe6mHpymZlkWYs3ECxS10Myk9HIXGoyU-3bm9rqQhBchYSPn5PzI3RMYEwA6IXuFm5Mecx20JDEFKIEGNtFQ5HGSZRKJgbowPtXABCQ0H00oILyVEo-RLMJbtqlqbBvyw570_jWYbVYuFblL7gMF-M7W6vONs_YNoVd2qJXFda2rZX34QnX9sMUOO-rrnfGH6K9UlXeHG3PEXq6vppPb6P7h5u76eQ-ynksWMS1oaQUEnJKieECOCVaMQVAZKFirUUiaVmWwUlG8iRVmkotFBQ50QkXbITONrlh1Lc-DJnV1uemqlRj2t5nRMiUiThO5D9oyjgwTpNAT3_R17Z3TfjIOpBQAQzSoM43Knet986U2cKFHblVRiBbN5KtG8nWjQR7sk3sdW2KH_ldQQAXG_BuK7P6Oym7nM8evyI_AQUzlOM</recordid><startdate>201703</startdate><enddate>201703</enddate><creator>Stone, Kyle A.</creator><creator>Shah, Devarshi</creator><creator>Kim, Min Hea</creator><creator>Roberts, Nathan R. M.</creator><creator>He, Q. Peter</creator><creator>Wang, Jin</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201703</creationdate><title>A novel soft sensor approach for estimating individual biomass in mixed cultures</title><author>Stone, Kyle A. ; Shah, Devarshi ; Kim, Min Hea ; Roberts, Nathan R. M. ; He, Q. Peter ; Wang, Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4583-4be21f890c221e480421ba3a0019da5bb8692fff4be931c67ab29b8a0dc1b6483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Biomass</topic><topic>Biosensing Techniques - methods</topic><topic>Biotechnology</topic><topic>Cell Count - methods</topic><topic>characterization</topic><topic>coculture</topic><topic>Coculture Techniques - methods</topic><topic>Escherichia coli - cytology</topic><topic>mixed culture</topic><topic>Reproducibility of Results</topic><topic>Saccharomyces cerevisiae - cytology</topic><topic>Sensitivity and Specificity</topic><topic>soft sensor</topic><topic>spectrophotometry</topic><topic>Spectrophotometry - methods</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stone, Kyle A.</creatorcontrib><creatorcontrib>Shah, Devarshi</creatorcontrib><creatorcontrib>Kim, Min Hea</creatorcontrib><creatorcontrib>Roberts, Nathan R. M.</creatorcontrib><creatorcontrib>He, Q. Peter</creatorcontrib><creatorcontrib>Wang, Jin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology progress</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stone, Kyle A.</au><au>Shah, Devarshi</au><au>Kim, Min Hea</au><au>Roberts, Nathan R. M.</au><au>He, Q. Peter</au><au>Wang, Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel soft sensor approach for estimating individual biomass in mixed cultures</atitle><jtitle>Biotechnology progress</jtitle><addtitle>Biotechnol Prog</addtitle><date>2017-03</date><risdate>2017</risdate><volume>33</volume><issue>2</issue><spage>347</spage><epage>354</epage><pages>347-354</pages><issn>8756-7938</issn><eissn>1520-6033</eissn><abstract>Due to many advantages associated with mixed cultures, their application in biotechnology has expanded rapidly in recent years. At the same time, many challenges remain for effective mixed culture applications. One obstacle is how to efficiently and accurately monitor the individual cell populations. Current approaches on individual cell mass quantification are suitable for off‐line, infrequent characterization. In this study, we propose a fast and accurate “soft sensor” approach for estimating individual cell concentrations in mixed cultures. The proposed approach utilizes optical density scanning spectrum of a mixed culture sample measured by a spectrophotometer over a range of wavelengths. A multivariate linear regression method, partial least squares or PLS, is applied to correlate individual cell concentrations to the spectrum. Three experimental case studies are used to examine the performance of the proposed soft sensor approach. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:347–354, 2017</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28247994</pmid><doi>10.1002/btpr.2453</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 8756-7938 |
ispartof | Biotechnology progress, 2017-03, Vol.33 (2), p.347-354 |
issn | 8756-7938 1520-6033 |
language | eng |
recordid | cdi_proquest_miscellaneous_1897385569 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Algorithms Biomass Biosensing Techniques - methods Biotechnology Cell Count - methods characterization coculture Coculture Techniques - methods Escherichia coli - cytology mixed culture Reproducibility of Results Saccharomyces cerevisiae - cytology Sensitivity and Specificity soft sensor spectrophotometry Spectrophotometry - methods Wavelengths |
title | A novel soft sensor approach for estimating individual biomass in mixed cultures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T19%3A18%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20soft%20sensor%20approach%20for%20estimating%20individual%20biomass%20in%20mixed%20cultures&rft.jtitle=Biotechnology%20progress&rft.au=Stone,%20Kyle%20A.&rft.date=2017-03&rft.volume=33&rft.issue=2&rft.spage=347&rft.epage=354&rft.pages=347-354&rft.issn=8756-7938&rft.eissn=1520-6033&rft_id=info:doi/10.1002/btpr.2453&rft_dat=%3Cproquest_cross%3E1897385569%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1891280307&rft_id=info:pmid/28247994&rfr_iscdi=true |