A novel soft sensor approach for estimating individual biomass in mixed cultures

Due to many advantages associated with mixed cultures, their application in biotechnology has expanded rapidly in recent years. At the same time, many challenges remain for effective mixed culture applications. One obstacle is how to efficiently and accurately monitor the individual cell populations...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology progress 2017-03, Vol.33 (2), p.347-354
Hauptverfasser: Stone, Kyle A., Shah, Devarshi, Kim, Min Hea, Roberts, Nathan R. M., He, Q. Peter, Wang, Jin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 354
container_issue 2
container_start_page 347
container_title Biotechnology progress
container_volume 33
creator Stone, Kyle A.
Shah, Devarshi
Kim, Min Hea
Roberts, Nathan R. M.
He, Q. Peter
Wang, Jin
description Due to many advantages associated with mixed cultures, their application in biotechnology has expanded rapidly in recent years. At the same time, many challenges remain for effective mixed culture applications. One obstacle is how to efficiently and accurately monitor the individual cell populations. Current approaches on individual cell mass quantification are suitable for off‐line, infrequent characterization. In this study, we propose a fast and accurate “soft sensor” approach for estimating individual cell concentrations in mixed cultures. The proposed approach utilizes optical density scanning spectrum of a mixed culture sample measured by a spectrophotometer over a range of wavelengths. A multivariate linear regression method, partial least squares or PLS, is applied to correlate individual cell concentrations to the spectrum. Three experimental case studies are used to examine the performance of the proposed soft sensor approach. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:347–354, 2017
doi_str_mv 10.1002/btpr.2453
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1897385569</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1897385569</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4583-4be21f890c221e480421ba3a0019da5bb8692fff4be931c67ab29b8a0dc1b6483</originalsourceid><addsrcrecordid>eNqN0ctKAzEUBuAgiq3VhS8gATe6mHpymZlkWYs3ECxS10Myk9HIXGoyU-3bm9rqQhBchYSPn5PzI3RMYEwA6IXuFm5Mecx20JDEFKIEGNtFQ5HGSZRKJgbowPtXABCQ0H00oILyVEo-RLMJbtqlqbBvyw570_jWYbVYuFblL7gMF-M7W6vONs_YNoVd2qJXFda2rZX34QnX9sMUOO-rrnfGH6K9UlXeHG3PEXq6vppPb6P7h5u76eQ-ynksWMS1oaQUEnJKieECOCVaMQVAZKFirUUiaVmWwUlG8iRVmkotFBQ50QkXbITONrlh1Lc-DJnV1uemqlRj2t5nRMiUiThO5D9oyjgwTpNAT3_R17Z3TfjIOpBQAQzSoM43Knet986U2cKFHblVRiBbN5KtG8nWjQR7sk3sdW2KH_ldQQAXG_BuK7P6Oym7nM8evyI_AQUzlOM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1891280307</pqid></control><display><type>article</type><title>A novel soft sensor approach for estimating individual biomass in mixed cultures</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Stone, Kyle A. ; Shah, Devarshi ; Kim, Min Hea ; Roberts, Nathan R. M. ; He, Q. Peter ; Wang, Jin</creator><creatorcontrib>Stone, Kyle A. ; Shah, Devarshi ; Kim, Min Hea ; Roberts, Nathan R. M. ; He, Q. Peter ; Wang, Jin</creatorcontrib><description>Due to many advantages associated with mixed cultures, their application in biotechnology has expanded rapidly in recent years. At the same time, many challenges remain for effective mixed culture applications. One obstacle is how to efficiently and accurately monitor the individual cell populations. Current approaches on individual cell mass quantification are suitable for off‐line, infrequent characterization. In this study, we propose a fast and accurate “soft sensor” approach for estimating individual cell concentrations in mixed cultures. The proposed approach utilizes optical density scanning spectrum of a mixed culture sample measured by a spectrophotometer over a range of wavelengths. A multivariate linear regression method, partial least squares or PLS, is applied to correlate individual cell concentrations to the spectrum. Three experimental case studies are used to examine the performance of the proposed soft sensor approach. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:347–354, 2017</description><identifier>ISSN: 8756-7938</identifier><identifier>EISSN: 1520-6033</identifier><identifier>DOI: 10.1002/btpr.2453</identifier><identifier>PMID: 28247994</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Biomass ; Biosensing Techniques - methods ; Biotechnology ; Cell Count - methods ; characterization ; coculture ; Coculture Techniques - methods ; Escherichia coli - cytology ; mixed culture ; Reproducibility of Results ; Saccharomyces cerevisiae - cytology ; Sensitivity and Specificity ; soft sensor ; spectrophotometry ; Spectrophotometry - methods ; Wavelengths</subject><ispartof>Biotechnology progress, 2017-03, Vol.33 (2), p.347-354</ispartof><rights>2017 American Institute of Chemical Engineers</rights><rights>2017 American Institute of Chemical Engineers.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4583-4be21f890c221e480421ba3a0019da5bb8692fff4be931c67ab29b8a0dc1b6483</citedby><cites>FETCH-LOGICAL-c4583-4be21f890c221e480421ba3a0019da5bb8692fff4be931c67ab29b8a0dc1b6483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbtpr.2453$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbtpr.2453$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27928,27929,45578,45579</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28247994$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stone, Kyle A.</creatorcontrib><creatorcontrib>Shah, Devarshi</creatorcontrib><creatorcontrib>Kim, Min Hea</creatorcontrib><creatorcontrib>Roberts, Nathan R. M.</creatorcontrib><creatorcontrib>He, Q. Peter</creatorcontrib><creatorcontrib>Wang, Jin</creatorcontrib><title>A novel soft sensor approach for estimating individual biomass in mixed cultures</title><title>Biotechnology progress</title><addtitle>Biotechnol Prog</addtitle><description>Due to many advantages associated with mixed cultures, their application in biotechnology has expanded rapidly in recent years. At the same time, many challenges remain for effective mixed culture applications. One obstacle is how to efficiently and accurately monitor the individual cell populations. Current approaches on individual cell mass quantification are suitable for off‐line, infrequent characterization. In this study, we propose a fast and accurate “soft sensor” approach for estimating individual cell concentrations in mixed cultures. The proposed approach utilizes optical density scanning spectrum of a mixed culture sample measured by a spectrophotometer over a range of wavelengths. A multivariate linear regression method, partial least squares or PLS, is applied to correlate individual cell concentrations to the spectrum. Three experimental case studies are used to examine the performance of the proposed soft sensor approach. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:347–354, 2017</description><subject>Algorithms</subject><subject>Biomass</subject><subject>Biosensing Techniques - methods</subject><subject>Biotechnology</subject><subject>Cell Count - methods</subject><subject>characterization</subject><subject>coculture</subject><subject>Coculture Techniques - methods</subject><subject>Escherichia coli - cytology</subject><subject>mixed culture</subject><subject>Reproducibility of Results</subject><subject>Saccharomyces cerevisiae - cytology</subject><subject>Sensitivity and Specificity</subject><subject>soft sensor</subject><subject>spectrophotometry</subject><subject>Spectrophotometry - methods</subject><subject>Wavelengths</subject><issn>8756-7938</issn><issn>1520-6033</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0ctKAzEUBuAgiq3VhS8gATe6mHpymZlkWYs3ECxS10Myk9HIXGoyU-3bm9rqQhBchYSPn5PzI3RMYEwA6IXuFm5Mecx20JDEFKIEGNtFQ5HGSZRKJgbowPtXABCQ0H00oILyVEo-RLMJbtqlqbBvyw570_jWYbVYuFblL7gMF-M7W6vONs_YNoVd2qJXFda2rZX34QnX9sMUOO-rrnfGH6K9UlXeHG3PEXq6vppPb6P7h5u76eQ-ynksWMS1oaQUEnJKieECOCVaMQVAZKFirUUiaVmWwUlG8iRVmkotFBQ50QkXbITONrlh1Lc-DJnV1uemqlRj2t5nRMiUiThO5D9oyjgwTpNAT3_R17Z3TfjIOpBQAQzSoM43Knet986U2cKFHblVRiBbN5KtG8nWjQR7sk3sdW2KH_ldQQAXG_BuK7P6Oym7nM8evyI_AQUzlOM</recordid><startdate>201703</startdate><enddate>201703</enddate><creator>Stone, Kyle A.</creator><creator>Shah, Devarshi</creator><creator>Kim, Min Hea</creator><creator>Roberts, Nathan R. M.</creator><creator>He, Q. Peter</creator><creator>Wang, Jin</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201703</creationdate><title>A novel soft sensor approach for estimating individual biomass in mixed cultures</title><author>Stone, Kyle A. ; Shah, Devarshi ; Kim, Min Hea ; Roberts, Nathan R. M. ; He, Q. Peter ; Wang, Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4583-4be21f890c221e480421ba3a0019da5bb8692fff4be931c67ab29b8a0dc1b6483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Biomass</topic><topic>Biosensing Techniques - methods</topic><topic>Biotechnology</topic><topic>Cell Count - methods</topic><topic>characterization</topic><topic>coculture</topic><topic>Coculture Techniques - methods</topic><topic>Escherichia coli - cytology</topic><topic>mixed culture</topic><topic>Reproducibility of Results</topic><topic>Saccharomyces cerevisiae - cytology</topic><topic>Sensitivity and Specificity</topic><topic>soft sensor</topic><topic>spectrophotometry</topic><topic>Spectrophotometry - methods</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stone, Kyle A.</creatorcontrib><creatorcontrib>Shah, Devarshi</creatorcontrib><creatorcontrib>Kim, Min Hea</creatorcontrib><creatorcontrib>Roberts, Nathan R. M.</creatorcontrib><creatorcontrib>He, Q. Peter</creatorcontrib><creatorcontrib>Wang, Jin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology progress</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stone, Kyle A.</au><au>Shah, Devarshi</au><au>Kim, Min Hea</au><au>Roberts, Nathan R. M.</au><au>He, Q. Peter</au><au>Wang, Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel soft sensor approach for estimating individual biomass in mixed cultures</atitle><jtitle>Biotechnology progress</jtitle><addtitle>Biotechnol Prog</addtitle><date>2017-03</date><risdate>2017</risdate><volume>33</volume><issue>2</issue><spage>347</spage><epage>354</epage><pages>347-354</pages><issn>8756-7938</issn><eissn>1520-6033</eissn><abstract>Due to many advantages associated with mixed cultures, their application in biotechnology has expanded rapidly in recent years. At the same time, many challenges remain for effective mixed culture applications. One obstacle is how to efficiently and accurately monitor the individual cell populations. Current approaches on individual cell mass quantification are suitable for off‐line, infrequent characterization. In this study, we propose a fast and accurate “soft sensor” approach for estimating individual cell concentrations in mixed cultures. The proposed approach utilizes optical density scanning spectrum of a mixed culture sample measured by a spectrophotometer over a range of wavelengths. A multivariate linear regression method, partial least squares or PLS, is applied to correlate individual cell concentrations to the spectrum. Three experimental case studies are used to examine the performance of the proposed soft sensor approach. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:347–354, 2017</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28247994</pmid><doi>10.1002/btpr.2453</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 8756-7938
ispartof Biotechnology progress, 2017-03, Vol.33 (2), p.347-354
issn 8756-7938
1520-6033
language eng
recordid cdi_proquest_miscellaneous_1897385569
source MEDLINE; Access via Wiley Online Library
subjects Algorithms
Biomass
Biosensing Techniques - methods
Biotechnology
Cell Count - methods
characterization
coculture
Coculture Techniques - methods
Escherichia coli - cytology
mixed culture
Reproducibility of Results
Saccharomyces cerevisiae - cytology
Sensitivity and Specificity
soft sensor
spectrophotometry
Spectrophotometry - methods
Wavelengths
title A novel soft sensor approach for estimating individual biomass in mixed cultures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T19%3A18%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20soft%20sensor%20approach%20for%20estimating%20individual%20biomass%20in%20mixed%20cultures&rft.jtitle=Biotechnology%20progress&rft.au=Stone,%20Kyle%20A.&rft.date=2017-03&rft.volume=33&rft.issue=2&rft.spage=347&rft.epage=354&rft.pages=347-354&rft.issn=8756-7938&rft.eissn=1520-6033&rft_id=info:doi/10.1002/btpr.2453&rft_dat=%3Cproquest_cross%3E1897385569%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1891280307&rft_id=info:pmid/28247994&rfr_iscdi=true