Function of heterochromatin protein 1 during DNA repair
This review focuses on the function of heterochromatin protein HP1 in response to DNA damage. We specifically outline the regulatory mechanisms in which HP1 and its interacting partners are involved. HP1 protein subtypes (HP1α, HP1β, and HP1γ) are the main components of constitutive heterochromatin,...
Gespeichert in:
Veröffentlicht in: | Protoplasma 2017-05, Vol.254 (3), p.1233-1240 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1240 |
---|---|
container_issue | 3 |
container_start_page | 1233 |
container_title | Protoplasma |
container_volume | 254 |
creator | Bártová, Eva Malyšková, Barbora Komůrková, Denisa Legartová, Soňa Suchánková, Jana Krejčí, Jana Kozubek, Stanislav |
description | This review focuses on the function of heterochromatin protein HP1 in response to DNA damage. We specifically outline the regulatory mechanisms in which HP1 and its interacting partners are involved. HP1 protein subtypes (HP1α, HP1β, and HP1γ) are the main components of constitutive heterochromatin, and HP1α and HP1β in particular are responsible for heterochromatin maintenance. The recruitment of these proteins to DNA lesions is also important from the perspective of proper DNA repair mechanisms. For example, HP1α is necessary for the binding of the main DNA damage-related protein 53BP1 at DNA repair foci, which are positive not only for the HP1α protein but also for the RAD51 protein, a component of DNA repair machinery. The HP1β protein also appears in monomeric form in DNA lesions together with the evolutionarily well-conserved protein called proliferating cell nuclear antigen (PCNA). The role of HP1 in DNA lesions is also mediated via the Kap1 transcription repressor. Taken together, these results indicate that the function of HP1 after DNA injury depends strongly on the kinetics of other DNA repair-related factors and their post-translational modifications, such as the phosphorylation of Kap-1. |
doi_str_mv | 10.1007/s00709-017-1090-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1897384315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1897384315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-66597c7203b900cac36930d81e953f9e154ca7d8c332c4807a5aaac8933d4e613</originalsourceid><addsrcrecordid>eNqNkUtLAzEUhYMoWh8_wI0MuHEzem_u5LUUtSqIbhTchTST2pF2piYzC_-9KVURQXBz7-Y75z4OY4cIpwigzlIuYEpAVSIYKGmDjVCiKCUC32QjAKISNT3vsN2UXgFAcBDbbIdrTjKLR0yNh9b3TdcW3bSYhT7Ezs9it3B90xbL2PUhdyzqITbtS3F5f17EsHRN3GdbUzdP4eCz77Gn8dXjxU1593B9e3F-V_pKYV9KKYzyigNNDIB3nqQhqDUGI2hqAorKO1VrT8R9pUE54Zzz2hDVVZBIe-xk7Zt3eRtC6u2iST7M564N3ZAsaqNIV4TiH6jiQglZyYwe_0JfuyG2-ZBMaa61EFBlCteUj11KMUztMjYLF98tgl0FYNcB2ByAXQVgKWuOPp2HySLU34qvj2eAr4G0XL00xB-j_3T9AB-1jQY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1882885504</pqid></control><display><type>article</type><title>Function of heterochromatin protein 1 during DNA repair</title><source>MEDLINE</source><source>Springer Online Journals Complete</source><creator>Bártová, Eva ; Malyšková, Barbora ; Komůrková, Denisa ; Legartová, Soňa ; Suchánková, Jana ; Krejčí, Jana ; Kozubek, Stanislav</creator><creatorcontrib>Bártová, Eva ; Malyšková, Barbora ; Komůrková, Denisa ; Legartová, Soňa ; Suchánková, Jana ; Krejčí, Jana ; Kozubek, Stanislav</creatorcontrib><description>This review focuses on the function of heterochromatin protein HP1 in response to DNA damage. We specifically outline the regulatory mechanisms in which HP1 and its interacting partners are involved. HP1 protein subtypes (HP1α, HP1β, and HP1γ) are the main components of constitutive heterochromatin, and HP1α and HP1β in particular are responsible for heterochromatin maintenance. The recruitment of these proteins to DNA lesions is also important from the perspective of proper DNA repair mechanisms. For example, HP1α is necessary for the binding of the main DNA damage-related protein 53BP1 at DNA repair foci, which are positive not only for the HP1α protein but also for the RAD51 protein, a component of DNA repair machinery. The HP1β protein also appears in monomeric form in DNA lesions together with the evolutionarily well-conserved protein called proliferating cell nuclear antigen (PCNA). The role of HP1 in DNA lesions is also mediated via the Kap1 transcription repressor. Taken together, these results indicate that the function of HP1 after DNA injury depends strongly on the kinetics of other DNA repair-related factors and their post-translational modifications, such as the phosphorylation of Kap-1.</description><identifier>ISSN: 0033-183X</identifier><identifier>EISSN: 1615-6102</identifier><identifier>DOI: 10.1007/s00709-017-1090-3</identifier><identifier>PMID: 28236007</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Biomedical and Life Sciences ; Cell Biology ; Chromatin - metabolism ; Chromosomal Proteins, Non-Histone - metabolism ; DNA Damage - genetics ; DNA Repair - genetics ; Humans ; Life Sciences ; Plant Sciences ; Proliferating Cell Nuclear Antigen - metabolism ; Protein Processing, Post-Translational ; Repressor Proteins - metabolism ; Review Article ; Tripartite Motif-Containing Protein 28 ; Zoology</subject><ispartof>Protoplasma, 2017-05, Vol.254 (3), p.1233-1240</ispartof><rights>Springer-Verlag Wien 2017</rights><rights>Protoplasma is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-66597c7203b900cac36930d81e953f9e154ca7d8c332c4807a5aaac8933d4e613</citedby><cites>FETCH-LOGICAL-c471t-66597c7203b900cac36930d81e953f9e154ca7d8c332c4807a5aaac8933d4e613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00709-017-1090-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00709-017-1090-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,315,781,785,793,27927,27929,27930,41493,42562,51324</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28236007$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bártová, Eva</creatorcontrib><creatorcontrib>Malyšková, Barbora</creatorcontrib><creatorcontrib>Komůrková, Denisa</creatorcontrib><creatorcontrib>Legartová, Soňa</creatorcontrib><creatorcontrib>Suchánková, Jana</creatorcontrib><creatorcontrib>Krejčí, Jana</creatorcontrib><creatorcontrib>Kozubek, Stanislav</creatorcontrib><title>Function of heterochromatin protein 1 during DNA repair</title><title>Protoplasma</title><addtitle>Protoplasma</addtitle><addtitle>Protoplasma</addtitle><description>This review focuses on the function of heterochromatin protein HP1 in response to DNA damage. We specifically outline the regulatory mechanisms in which HP1 and its interacting partners are involved. HP1 protein subtypes (HP1α, HP1β, and HP1γ) are the main components of constitutive heterochromatin, and HP1α and HP1β in particular are responsible for heterochromatin maintenance. The recruitment of these proteins to DNA lesions is also important from the perspective of proper DNA repair mechanisms. For example, HP1α is necessary for the binding of the main DNA damage-related protein 53BP1 at DNA repair foci, which are positive not only for the HP1α protein but also for the RAD51 protein, a component of DNA repair machinery. The HP1β protein also appears in monomeric form in DNA lesions together with the evolutionarily well-conserved protein called proliferating cell nuclear antigen (PCNA). The role of HP1 in DNA lesions is also mediated via the Kap1 transcription repressor. Taken together, these results indicate that the function of HP1 after DNA injury depends strongly on the kinetics of other DNA repair-related factors and their post-translational modifications, such as the phosphorylation of Kap-1.</description><subject>Biomedical and Life Sciences</subject><subject>Cell Biology</subject><subject>Chromatin - metabolism</subject><subject>Chromosomal Proteins, Non-Histone - metabolism</subject><subject>DNA Damage - genetics</subject><subject>DNA Repair - genetics</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Plant Sciences</subject><subject>Proliferating Cell Nuclear Antigen - metabolism</subject><subject>Protein Processing, Post-Translational</subject><subject>Repressor Proteins - metabolism</subject><subject>Review Article</subject><subject>Tripartite Motif-Containing Protein 28</subject><subject>Zoology</subject><issn>0033-183X</issn><issn>1615-6102</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkUtLAzEUhYMoWh8_wI0MuHEzem_u5LUUtSqIbhTchTST2pF2piYzC_-9KVURQXBz7-Y75z4OY4cIpwigzlIuYEpAVSIYKGmDjVCiKCUC32QjAKISNT3vsN2UXgFAcBDbbIdrTjKLR0yNh9b3TdcW3bSYhT7Ezs9it3B90xbL2PUhdyzqITbtS3F5f17EsHRN3GdbUzdP4eCz77Gn8dXjxU1593B9e3F-V_pKYV9KKYzyigNNDIB3nqQhqDUGI2hqAorKO1VrT8R9pUE54Zzz2hDVVZBIe-xk7Zt3eRtC6u2iST7M564N3ZAsaqNIV4TiH6jiQglZyYwe_0JfuyG2-ZBMaa61EFBlCteUj11KMUztMjYLF98tgl0FYNcB2ByAXQVgKWuOPp2HySLU34qvj2eAr4G0XL00xB-j_3T9AB-1jQY</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Bártová, Eva</creator><creator>Malyšková, Barbora</creator><creator>Komůrková, Denisa</creator><creator>Legartová, Soňa</creator><creator>Suchánková, Jana</creator><creator>Krejčí, Jana</creator><creator>Kozubek, Stanislav</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>7TM</scope></search><sort><creationdate>20170501</creationdate><title>Function of heterochromatin protein 1 during DNA repair</title><author>Bártová, Eva ; Malyšková, Barbora ; Komůrková, Denisa ; Legartová, Soňa ; Suchánková, Jana ; Krejčí, Jana ; Kozubek, Stanislav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-66597c7203b900cac36930d81e953f9e154ca7d8c332c4807a5aaac8933d4e613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Biomedical and Life Sciences</topic><topic>Cell Biology</topic><topic>Chromatin - metabolism</topic><topic>Chromosomal Proteins, Non-Histone - metabolism</topic><topic>DNA Damage - genetics</topic><topic>DNA Repair - genetics</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Plant Sciences</topic><topic>Proliferating Cell Nuclear Antigen - metabolism</topic><topic>Protein Processing, Post-Translational</topic><topic>Repressor Proteins - metabolism</topic><topic>Review Article</topic><topic>Tripartite Motif-Containing Protein 28</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bártová, Eva</creatorcontrib><creatorcontrib>Malyšková, Barbora</creatorcontrib><creatorcontrib>Komůrková, Denisa</creatorcontrib><creatorcontrib>Legartová, Soňa</creatorcontrib><creatorcontrib>Suchánková, Jana</creatorcontrib><creatorcontrib>Krejčí, Jana</creatorcontrib><creatorcontrib>Kozubek, Stanislav</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><jtitle>Protoplasma</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bártová, Eva</au><au>Malyšková, Barbora</au><au>Komůrková, Denisa</au><au>Legartová, Soňa</au><au>Suchánková, Jana</au><au>Krejčí, Jana</au><au>Kozubek, Stanislav</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Function of heterochromatin protein 1 during DNA repair</atitle><jtitle>Protoplasma</jtitle><stitle>Protoplasma</stitle><addtitle>Protoplasma</addtitle><date>2017-05-01</date><risdate>2017</risdate><volume>254</volume><issue>3</issue><spage>1233</spage><epage>1240</epage><pages>1233-1240</pages><issn>0033-183X</issn><eissn>1615-6102</eissn><abstract>This review focuses on the function of heterochromatin protein HP1 in response to DNA damage. We specifically outline the regulatory mechanisms in which HP1 and its interacting partners are involved. HP1 protein subtypes (HP1α, HP1β, and HP1γ) are the main components of constitutive heterochromatin, and HP1α and HP1β in particular are responsible for heterochromatin maintenance. The recruitment of these proteins to DNA lesions is also important from the perspective of proper DNA repair mechanisms. For example, HP1α is necessary for the binding of the main DNA damage-related protein 53BP1 at DNA repair foci, which are positive not only for the HP1α protein but also for the RAD51 protein, a component of DNA repair machinery. The HP1β protein also appears in monomeric form in DNA lesions together with the evolutionarily well-conserved protein called proliferating cell nuclear antigen (PCNA). The role of HP1 in DNA lesions is also mediated via the Kap1 transcription repressor. Taken together, these results indicate that the function of HP1 after DNA injury depends strongly on the kinetics of other DNA repair-related factors and their post-translational modifications, such as the phosphorylation of Kap-1.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><pmid>28236007</pmid><doi>10.1007/s00709-017-1090-3</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0033-183X |
ispartof | Protoplasma, 2017-05, Vol.254 (3), p.1233-1240 |
issn | 0033-183X 1615-6102 |
language | eng |
recordid | cdi_proquest_miscellaneous_1897384315 |
source | MEDLINE; Springer Online Journals Complete |
subjects | Biomedical and Life Sciences Cell Biology Chromatin - metabolism Chromosomal Proteins, Non-Histone - metabolism DNA Damage - genetics DNA Repair - genetics Humans Life Sciences Plant Sciences Proliferating Cell Nuclear Antigen - metabolism Protein Processing, Post-Translational Repressor Proteins - metabolism Review Article Tripartite Motif-Containing Protein 28 Zoology |
title | Function of heterochromatin protein 1 during DNA repair |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T06%3A41%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Function%20of%20heterochromatin%20protein%201%20during%20DNA%20repair&rft.jtitle=Protoplasma&rft.au=B%C3%A1rtov%C3%A1,%20Eva&rft.date=2017-05-01&rft.volume=254&rft.issue=3&rft.spage=1233&rft.epage=1240&rft.pages=1233-1240&rft.issn=0033-183X&rft.eissn=1615-6102&rft_id=info:doi/10.1007/s00709-017-1090-3&rft_dat=%3Cproquest_cross%3E1897384315%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1882885504&rft_id=info:pmid/28236007&rfr_iscdi=true |