INTEGER PROGRAMMING APPROACH TO CONTROL INVASIVE SPECIES SPREAD BASED ON CELLULAR AUTOMATON MODEL

We propose a new optimization model that captures the spatial dynamics of invaders by a cellular automaton model and finds the optimal solution to control its spread within a 0–1 integer programming framework. The model seeks a solution by minimizing the total costs to implement treatments for preve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Natural resource modeling 2017-05, Vol.30 (2), p.N/A
Hauptverfasser: YOSHIMOTO, ATSUSHI, ASANTE, PATRICK, KONOSHIMA, MASASHI, SUROVÝ, PETER
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page N/A
container_issue 2
container_start_page
container_title Natural resource modeling
container_volume 30
creator YOSHIMOTO, ATSUSHI
ASANTE, PATRICK
KONOSHIMA, MASASHI
SUROVÝ, PETER
description We propose a new optimization model that captures the spatial dynamics of invaders by a cellular automaton model and finds the optimal solution to control its spread within a 0–1 integer programming framework. The model seeks a solution by minimizing the total costs to implement treatments for preventing the spread and damage caused by invaders’ colonization. By incorporating a cellular automaton model governed by state‐ and distance‐dependent probability rule of colonization, the model is transformed into a linear model, so that a 0–1 integer programming formulation is used to evaluate and compare an optimal allocation of treatments on colonized and uncolonized areas. The study uses a hypothetical map to show that treatments on colonized cells are more effective when implemented at the front line of the invaders, while treatments on uncolonized areas are effective when conducted with some distance or buffer zone away from the front line. These buffer zones are likely to be colonized regardless of treatment. Under annual budget limits, treatments on colonized cells are implemented first. With heterogeneity in the invaders’ dynamics, the proposed optimization model provides an optimal allocation of treatments much different from the solution with homogeneous environment. However, treatment at the front line of the invading species is always recommended.
doi_str_mv 10.1111/nrm.12101
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1897376552</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1897376552</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3961-d9a830893e63bb6e8f1495594ac4e52e947f242e76bdbde4c5cb02a9148662e83</originalsourceid><addsrcrecordid>eNp10M9LwzAUB_AgCs7pwf8g4EUP3Zo2aZNj7GJX6I_RdruGtktho1u1ccj-ezPrSTCXRx6f93h8AXhE9gyZNz8OhxlykI2uwAQxl1k-xuQaTGzKbIsSn9yCO633to0wYWQCqigtRShyuMqzMOdJEqUh5Cvz48ESlhkMsrTMsxhG6YYX0UbAYiWCSBSm5oIv4CsvxAJmKQxEHK9jnkO-LrOEl6aVZAsR34Obtuq0evitU7B-E2WwtOIsjAIeW43LPGRtWUVdc6WrPLeuPUVbhBkhDFcNVsRRDPutgx3le_W23irckKa2nYohTD3PUdSdgudx7_vQf5yU_pSHnW5U11VH1Z-0RJT5ru8R4hj69Ifu-9NwNNddFKIudRA26mVUzdBrPahWvg-7QzWcJbLlJWxpwpY_YRs7H-3XrlPn_6FM82Sc-AaTcHbD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1891838214</pqid></control><display><type>article</type><title>INTEGER PROGRAMMING APPROACH TO CONTROL INVASIVE SPECIES SPREAD BASED ON CELLULAR AUTOMATON MODEL</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>YOSHIMOTO, ATSUSHI ; ASANTE, PATRICK ; KONOSHIMA, MASASHI ; SUROVÝ, PETER</creator><creatorcontrib>YOSHIMOTO, ATSUSHI ; ASANTE, PATRICK ; KONOSHIMA, MASASHI ; SUROVÝ, PETER</creatorcontrib><description>We propose a new optimization model that captures the spatial dynamics of invaders by a cellular automaton model and finds the optimal solution to control its spread within a 0–1 integer programming framework. The model seeks a solution by minimizing the total costs to implement treatments for preventing the spread and damage caused by invaders’ colonization. By incorporating a cellular automaton model governed by state‐ and distance‐dependent probability rule of colonization, the model is transformed into a linear model, so that a 0–1 integer programming formulation is used to evaluate and compare an optimal allocation of treatments on colonized and uncolonized areas. The study uses a hypothetical map to show that treatments on colonized cells are more effective when implemented at the front line of the invaders, while treatments on uncolonized areas are effective when conducted with some distance or buffer zone away from the front line. These buffer zones are likely to be colonized regardless of treatment. Under annual budget limits, treatments on colonized cells are implemented first. With heterogeneity in the invaders’ dynamics, the proposed optimization model provides an optimal allocation of treatments much different from the solution with homogeneous environment. However, treatment at the front line of the invading species is always recommended.</description><identifier>ISSN: 0890-8575</identifier><identifier>EISSN: 1939-7445</identifier><identifier>DOI: 10.1111/nrm.12101</identifier><language>eng</language><publisher>Hoboken: John Wiley &amp; Sons, Inc</publisher><subject>0–1 integer programming ; Cellular automaton ; Integer programming ; invasive species ; optimization ; spatial management</subject><ispartof>Natural resource modeling, 2017-05, Vol.30 (2), p.N/A</ispartof><rights>Copyright © 2016 Wiley Periodicals, Inc.</rights><rights>Copyright © 2017 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3961-d9a830893e63bb6e8f1495594ac4e52e947f242e76bdbde4c5cb02a9148662e83</citedby><cites>FETCH-LOGICAL-c3961-d9a830893e63bb6e8f1495594ac4e52e947f242e76bdbde4c5cb02a9148662e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fnrm.12101$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fnrm.12101$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>YOSHIMOTO, ATSUSHI</creatorcontrib><creatorcontrib>ASANTE, PATRICK</creatorcontrib><creatorcontrib>KONOSHIMA, MASASHI</creatorcontrib><creatorcontrib>SUROVÝ, PETER</creatorcontrib><title>INTEGER PROGRAMMING APPROACH TO CONTROL INVASIVE SPECIES SPREAD BASED ON CELLULAR AUTOMATON MODEL</title><title>Natural resource modeling</title><description>We propose a new optimization model that captures the spatial dynamics of invaders by a cellular automaton model and finds the optimal solution to control its spread within a 0–1 integer programming framework. The model seeks a solution by minimizing the total costs to implement treatments for preventing the spread and damage caused by invaders’ colonization. By incorporating a cellular automaton model governed by state‐ and distance‐dependent probability rule of colonization, the model is transformed into a linear model, so that a 0–1 integer programming formulation is used to evaluate and compare an optimal allocation of treatments on colonized and uncolonized areas. The study uses a hypothetical map to show that treatments on colonized cells are more effective when implemented at the front line of the invaders, while treatments on uncolonized areas are effective when conducted with some distance or buffer zone away from the front line. These buffer zones are likely to be colonized regardless of treatment. Under annual budget limits, treatments on colonized cells are implemented first. With heterogeneity in the invaders’ dynamics, the proposed optimization model provides an optimal allocation of treatments much different from the solution with homogeneous environment. However, treatment at the front line of the invading species is always recommended.</description><subject>0–1 integer programming</subject><subject>Cellular automaton</subject><subject>Integer programming</subject><subject>invasive species</subject><subject>optimization</subject><subject>spatial management</subject><issn>0890-8575</issn><issn>1939-7445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp10M9LwzAUB_AgCs7pwf8g4EUP3Zo2aZNj7GJX6I_RdruGtktho1u1ccj-ezPrSTCXRx6f93h8AXhE9gyZNz8OhxlykI2uwAQxl1k-xuQaTGzKbIsSn9yCO633to0wYWQCqigtRShyuMqzMOdJEqUh5Cvz48ESlhkMsrTMsxhG6YYX0UbAYiWCSBSm5oIv4CsvxAJmKQxEHK9jnkO-LrOEl6aVZAsR34Obtuq0evitU7B-E2WwtOIsjAIeW43LPGRtWUVdc6WrPLeuPUVbhBkhDFcNVsRRDPutgx3le_W23irckKa2nYohTD3PUdSdgudx7_vQf5yU_pSHnW5U11VH1Z-0RJT5ru8R4hj69Ifu-9NwNNddFKIudRA26mVUzdBrPahWvg-7QzWcJbLlJWxpwpY_YRs7H-3XrlPn_6FM82Sc-AaTcHbD</recordid><startdate>201705</startdate><enddate>201705</enddate><creator>YOSHIMOTO, ATSUSHI</creator><creator>ASANTE, PATRICK</creator><creator>KONOSHIMA, MASASHI</creator><creator>SUROVÝ, PETER</creator><general>John Wiley &amp; Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope></search><sort><creationdate>201705</creationdate><title>INTEGER PROGRAMMING APPROACH TO CONTROL INVASIVE SPECIES SPREAD BASED ON CELLULAR AUTOMATON MODEL</title><author>YOSHIMOTO, ATSUSHI ; ASANTE, PATRICK ; KONOSHIMA, MASASHI ; SUROVÝ, PETER</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3961-d9a830893e63bb6e8f1495594ac4e52e947f242e76bdbde4c5cb02a9148662e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>0–1 integer programming</topic><topic>Cellular automaton</topic><topic>Integer programming</topic><topic>invasive species</topic><topic>optimization</topic><topic>spatial management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>YOSHIMOTO, ATSUSHI</creatorcontrib><creatorcontrib>ASANTE, PATRICK</creatorcontrib><creatorcontrib>KONOSHIMA, MASASHI</creatorcontrib><creatorcontrib>SUROVÝ, PETER</creatorcontrib><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Natural resource modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>YOSHIMOTO, ATSUSHI</au><au>ASANTE, PATRICK</au><au>KONOSHIMA, MASASHI</au><au>SUROVÝ, PETER</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>INTEGER PROGRAMMING APPROACH TO CONTROL INVASIVE SPECIES SPREAD BASED ON CELLULAR AUTOMATON MODEL</atitle><jtitle>Natural resource modeling</jtitle><date>2017-05</date><risdate>2017</risdate><volume>30</volume><issue>2</issue><epage>N/A</epage><issn>0890-8575</issn><eissn>1939-7445</eissn><abstract>We propose a new optimization model that captures the spatial dynamics of invaders by a cellular automaton model and finds the optimal solution to control its spread within a 0–1 integer programming framework. The model seeks a solution by minimizing the total costs to implement treatments for preventing the spread and damage caused by invaders’ colonization. By incorporating a cellular automaton model governed by state‐ and distance‐dependent probability rule of colonization, the model is transformed into a linear model, so that a 0–1 integer programming formulation is used to evaluate and compare an optimal allocation of treatments on colonized and uncolonized areas. The study uses a hypothetical map to show that treatments on colonized cells are more effective when implemented at the front line of the invaders, while treatments on uncolonized areas are effective when conducted with some distance or buffer zone away from the front line. These buffer zones are likely to be colonized regardless of treatment. Under annual budget limits, treatments on colonized cells are implemented first. With heterogeneity in the invaders’ dynamics, the proposed optimization model provides an optimal allocation of treatments much different from the solution with homogeneous environment. However, treatment at the front line of the invading species is always recommended.</abstract><cop>Hoboken</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1111/nrm.12101</doi><tpages>42</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0890-8575
ispartof Natural resource modeling, 2017-05, Vol.30 (2), p.N/A
issn 0890-8575
1939-7445
language eng
recordid cdi_proquest_miscellaneous_1897376552
source Wiley Online Library Journals Frontfile Complete
subjects 0–1 integer programming
Cellular automaton
Integer programming
invasive species
optimization
spatial management
title INTEGER PROGRAMMING APPROACH TO CONTROL INVASIVE SPECIES SPREAD BASED ON CELLULAR AUTOMATON MODEL
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A50%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=INTEGER%20PROGRAMMING%20APPROACH%20TO%20CONTROL%20INVASIVE%20SPECIES%20SPREAD%20BASED%20ON%20CELLULAR%20AUTOMATON%20MODEL&rft.jtitle=Natural%20resource%20modeling&rft.au=YOSHIMOTO,%20ATSUSHI&rft.date=2017-05&rft.volume=30&rft.issue=2&rft.epage=N/A&rft.issn=0890-8575&rft.eissn=1939-7445&rft_id=info:doi/10.1111/nrm.12101&rft_dat=%3Cproquest_cross%3E1897376552%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1891838214&rft_id=info:pmid/&rfr_iscdi=true