An orthogonalized platform for genetic code expansion in both bacteria and eukaryotes
In Escherichia coli , replacement of the endogenous tryptophanyl–tRNA synthetase–tRNA pair with its counterpart from Saccharomyces cerevisiae liberates the bacterial counterpart for directed evolution to incorporate unnatural amino acids in both E. coli and eukaryotes. In this study, we demonstrate...
Gespeichert in:
Veröffentlicht in: | Nature chemical biology 2017-04, Vol.13 (4), p.446-450 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 450 |
---|---|
container_issue | 4 |
container_start_page | 446 |
container_title | Nature chemical biology |
container_volume | 13 |
creator | Italia, James S Addy, Partha Sarathi Wrobel, Chester J J Crawford, Lisa A Lajoie, Marc J Zheng, Yunan Chatterjee, Abhishek |
description | In
Escherichia coli
, replacement of the endogenous tryptophanyl–tRNA synthetase–tRNA pair with its counterpart from
Saccharomyces cerevisiae
liberates the bacterial counterpart for directed evolution to incorporate unnatural amino acids in both
E. coli
and eukaryotes.
In this study, we demonstrate the feasibility of expanding the genetic code of
Escherichia coli
using its own tryptophanyl–tRNA synthetase and tRNA (TrpRS–tRNA
Trp
) pair. This was made possible by first functionally replacing this endogenous pair with an
E. coli
–optimized counterpart from
Saccharomyces cerevisiae
, and then reintroducing the liberated
E. coli
TrpRS–tRNA
Trp
pair into the resulting strain as a nonsense suppressor, which was then followed by its directed evolution to genetically encode several new unnatural amino acids (UAAs). These engineered TrpRS–tRNA
Trp
variants were also able to drive efficient UAA mutagenesis in mammalian cells. Since bacteria-derived aminoacyl–tRNA synthetase (aaRS)–tRNA pairs are typically orthogonal in eukaryotes, our work provides a general strategy to develop additional aaRS–tRNA pairs that can be used for UAA mutagenesis of proteins expressed in both
E. coli
and eukaryotes. |
doi_str_mv | 10.1038/nchembio.2312 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1897374159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4322024023</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-548d344030ff136c41725c23133ef7e75e58c4d8387fecc44cf35c840c305d293</originalsourceid><addsrcrecordid>eNptkM1LwzAYh4Mobk6PXiXgxUtnPtv0OIZfMPDiziVN326dbVKTFtS_3s5tIuIlb-B9-L38HoQuKZlSwtWtNWto8spNGafsCI2plCwSIk6Pf_6SjNBZCBtCeBxTdYpGTNGUCUrGaDmz2Plu7VbO6rr6hAK3te5K5xs8PHgFFrrKYOMKwPDeahsqZ3Flce66Nc616cBXGmtbYOhftf9wHYRzdFLqOsDFfk7Q8v7uZf4YLZ4fnuazRWR4yrtIClVwIQgnZUl5bARNmDRDEc6hTCCRIJURheIqKcEYIUzJpVGCGE5kwVI-QTe73Na7tx5ClzVVMFDX2oLrQ0ZVmvBEULlFr_-gG9f7ofM3xZiMkyQeqGhHGe9C8FBmra-aoVVGSbb1nR18Z1vfA3-1T-3zBoof-iB4AKY7IAwruwL_6-y_iV_3KYxK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1892256776</pqid></control><display><type>article</type><title>An orthogonalized platform for genetic code expansion in both bacteria and eukaryotes</title><source>MEDLINE</source><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Italia, James S ; Addy, Partha Sarathi ; Wrobel, Chester J J ; Crawford, Lisa A ; Lajoie, Marc J ; Zheng, Yunan ; Chatterjee, Abhishek</creator><creatorcontrib>Italia, James S ; Addy, Partha Sarathi ; Wrobel, Chester J J ; Crawford, Lisa A ; Lajoie, Marc J ; Zheng, Yunan ; Chatterjee, Abhishek</creatorcontrib><description>In
Escherichia coli
, replacement of the endogenous tryptophanyl–tRNA synthetase–tRNA pair with its counterpart from
Saccharomyces cerevisiae
liberates the bacterial counterpart for directed evolution to incorporate unnatural amino acids in both
E. coli
and eukaryotes.
In this study, we demonstrate the feasibility of expanding the genetic code of
Escherichia coli
using its own tryptophanyl–tRNA synthetase and tRNA (TrpRS–tRNA
Trp
) pair. This was made possible by first functionally replacing this endogenous pair with an
E. coli
–optimized counterpart from
Saccharomyces cerevisiae
, and then reintroducing the liberated
E. coli
TrpRS–tRNA
Trp
pair into the resulting strain as a nonsense suppressor, which was then followed by its directed evolution to genetically encode several new unnatural amino acids (UAAs). These engineered TrpRS–tRNA
Trp
variants were also able to drive efficient UAA mutagenesis in mammalian cells. Since bacteria-derived aminoacyl–tRNA synthetase (aaRS)–tRNA pairs are typically orthogonal in eukaryotes, our work provides a general strategy to develop additional aaRS–tRNA pairs that can be used for UAA mutagenesis of proteins expressed in both
E. coli
and eukaryotes.</description><identifier>ISSN: 1552-4450</identifier><identifier>EISSN: 1552-4469</identifier><identifier>DOI: 10.1038/nchembio.2312</identifier><identifier>PMID: 28192410</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/92/2783 ; 631/92/469 ; 631/92/612 ; 631/92/96 ; Amino acids ; Biochemical Engineering ; Biochemistry ; Bioorganic Chemistry ; Cell Biology ; Chemistry ; Chemistry/Food Science ; E coli ; Escherichia coli ; Escherichia coli - genetics ; Eukaryota - genetics ; Eukaryotes ; Feasibility studies ; Genetic Code - genetics ; Genetic Engineering ; HEK293 Cells ; Humans ; Mammals ; Molecular Conformation ; Ribonucleic acid ; RNA ; RNA, Transfer - genetics ; RNA, Transfer - metabolism ; Saccharomyces cerevisiae ; Tryptophan-tRNA Ligase - metabolism</subject><ispartof>Nature chemical biology, 2017-04, Vol.13 (4), p.446-450</ispartof><rights>Springer Nature America, Inc. 2017</rights><rights>Copyright Nature Publishing Group Apr 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-548d344030ff136c41725c23133ef7e75e58c4d8387fecc44cf35c840c305d293</citedby><cites>FETCH-LOGICAL-c393t-548d344030ff136c41725c23133ef7e75e58c4d8387fecc44cf35c840c305d293</cites><orcidid>0000-0003-2653-5516 ; 0000-0002-0477-5511</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nchembio.2312$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nchembio.2312$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28192410$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Italia, James S</creatorcontrib><creatorcontrib>Addy, Partha Sarathi</creatorcontrib><creatorcontrib>Wrobel, Chester J J</creatorcontrib><creatorcontrib>Crawford, Lisa A</creatorcontrib><creatorcontrib>Lajoie, Marc J</creatorcontrib><creatorcontrib>Zheng, Yunan</creatorcontrib><creatorcontrib>Chatterjee, Abhishek</creatorcontrib><title>An orthogonalized platform for genetic code expansion in both bacteria and eukaryotes</title><title>Nature chemical biology</title><addtitle>Nat Chem Biol</addtitle><addtitle>Nat Chem Biol</addtitle><description>In
Escherichia coli
, replacement of the endogenous tryptophanyl–tRNA synthetase–tRNA pair with its counterpart from
Saccharomyces cerevisiae
liberates the bacterial counterpart for directed evolution to incorporate unnatural amino acids in both
E. coli
and eukaryotes.
In this study, we demonstrate the feasibility of expanding the genetic code of
Escherichia coli
using its own tryptophanyl–tRNA synthetase and tRNA (TrpRS–tRNA
Trp
) pair. This was made possible by first functionally replacing this endogenous pair with an
E. coli
–optimized counterpart from
Saccharomyces cerevisiae
, and then reintroducing the liberated
E. coli
TrpRS–tRNA
Trp
pair into the resulting strain as a nonsense suppressor, which was then followed by its directed evolution to genetically encode several new unnatural amino acids (UAAs). These engineered TrpRS–tRNA
Trp
variants were also able to drive efficient UAA mutagenesis in mammalian cells. Since bacteria-derived aminoacyl–tRNA synthetase (aaRS)–tRNA pairs are typically orthogonal in eukaryotes, our work provides a general strategy to develop additional aaRS–tRNA pairs that can be used for UAA mutagenesis of proteins expressed in both
E. coli
and eukaryotes.</description><subject>631/92/2783</subject><subject>631/92/469</subject><subject>631/92/612</subject><subject>631/92/96</subject><subject>Amino acids</subject><subject>Biochemical Engineering</subject><subject>Biochemistry</subject><subject>Bioorganic Chemistry</subject><subject>Cell Biology</subject><subject>Chemistry</subject><subject>Chemistry/Food Science</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Eukaryota - genetics</subject><subject>Eukaryotes</subject><subject>Feasibility studies</subject><subject>Genetic Code - genetics</subject><subject>Genetic Engineering</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Mammals</subject><subject>Molecular Conformation</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA, Transfer - genetics</subject><subject>RNA, Transfer - metabolism</subject><subject>Saccharomyces cerevisiae</subject><subject>Tryptophan-tRNA Ligase - metabolism</subject><issn>1552-4450</issn><issn>1552-4469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNptkM1LwzAYh4Mobk6PXiXgxUtnPtv0OIZfMPDiziVN326dbVKTFtS_3s5tIuIlb-B9-L38HoQuKZlSwtWtNWto8spNGafsCI2plCwSIk6Pf_6SjNBZCBtCeBxTdYpGTNGUCUrGaDmz2Plu7VbO6rr6hAK3te5K5xs8PHgFFrrKYOMKwPDeahsqZ3Flce66Nc616cBXGmtbYOhftf9wHYRzdFLqOsDFfk7Q8v7uZf4YLZ4fnuazRWR4yrtIClVwIQgnZUl5bARNmDRDEc6hTCCRIJURheIqKcEYIUzJpVGCGE5kwVI-QTe73Na7tx5ClzVVMFDX2oLrQ0ZVmvBEULlFr_-gG9f7ofM3xZiMkyQeqGhHGe9C8FBmra-aoVVGSbb1nR18Z1vfA3-1T-3zBoof-iB4AKY7IAwruwL_6-y_iV_3KYxK</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Italia, James S</creator><creator>Addy, Partha Sarathi</creator><creator>Wrobel, Chester J J</creator><creator>Crawford, Lisa A</creator><creator>Lajoie, Marc J</creator><creator>Zheng, Yunan</creator><creator>Chatterjee, Abhishek</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0003-2653-5516</orcidid><orcidid>https://orcid.org/0000-0002-0477-5511</orcidid></search><sort><creationdate>20170401</creationdate><title>An orthogonalized platform for genetic code expansion in both bacteria and eukaryotes</title><author>Italia, James S ; Addy, Partha Sarathi ; Wrobel, Chester J J ; Crawford, Lisa A ; Lajoie, Marc J ; Zheng, Yunan ; Chatterjee, Abhishek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-548d344030ff136c41725c23133ef7e75e58c4d8387fecc44cf35c840c305d293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>631/92/2783</topic><topic>631/92/469</topic><topic>631/92/612</topic><topic>631/92/96</topic><topic>Amino acids</topic><topic>Biochemical Engineering</topic><topic>Biochemistry</topic><topic>Bioorganic Chemistry</topic><topic>Cell Biology</topic><topic>Chemistry</topic><topic>Chemistry/Food Science</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Eukaryota - genetics</topic><topic>Eukaryotes</topic><topic>Feasibility studies</topic><topic>Genetic Code - genetics</topic><topic>Genetic Engineering</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Mammals</topic><topic>Molecular Conformation</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA, Transfer - genetics</topic><topic>RNA, Transfer - metabolism</topic><topic>Saccharomyces cerevisiae</topic><topic>Tryptophan-tRNA Ligase - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Italia, James S</creatorcontrib><creatorcontrib>Addy, Partha Sarathi</creatorcontrib><creatorcontrib>Wrobel, Chester J J</creatorcontrib><creatorcontrib>Crawford, Lisa A</creatorcontrib><creatorcontrib>Lajoie, Marc J</creatorcontrib><creatorcontrib>Zheng, Yunan</creatorcontrib><creatorcontrib>Chatterjee, Abhishek</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><jtitle>Nature chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Italia, James S</au><au>Addy, Partha Sarathi</au><au>Wrobel, Chester J J</au><au>Crawford, Lisa A</au><au>Lajoie, Marc J</au><au>Zheng, Yunan</au><au>Chatterjee, Abhishek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An orthogonalized platform for genetic code expansion in both bacteria and eukaryotes</atitle><jtitle>Nature chemical biology</jtitle><stitle>Nat Chem Biol</stitle><addtitle>Nat Chem Biol</addtitle><date>2017-04-01</date><risdate>2017</risdate><volume>13</volume><issue>4</issue><spage>446</spage><epage>450</epage><pages>446-450</pages><issn>1552-4450</issn><eissn>1552-4469</eissn><abstract>In
Escherichia coli
, replacement of the endogenous tryptophanyl–tRNA synthetase–tRNA pair with its counterpart from
Saccharomyces cerevisiae
liberates the bacterial counterpart for directed evolution to incorporate unnatural amino acids in both
E. coli
and eukaryotes.
In this study, we demonstrate the feasibility of expanding the genetic code of
Escherichia coli
using its own tryptophanyl–tRNA synthetase and tRNA (TrpRS–tRNA
Trp
) pair. This was made possible by first functionally replacing this endogenous pair with an
E. coli
–optimized counterpart from
Saccharomyces cerevisiae
, and then reintroducing the liberated
E. coli
TrpRS–tRNA
Trp
pair into the resulting strain as a nonsense suppressor, which was then followed by its directed evolution to genetically encode several new unnatural amino acids (UAAs). These engineered TrpRS–tRNA
Trp
variants were also able to drive efficient UAA mutagenesis in mammalian cells. Since bacteria-derived aminoacyl–tRNA synthetase (aaRS)–tRNA pairs are typically orthogonal in eukaryotes, our work provides a general strategy to develop additional aaRS–tRNA pairs that can be used for UAA mutagenesis of proteins expressed in both
E. coli
and eukaryotes.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>28192410</pmid><doi>10.1038/nchembio.2312</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-2653-5516</orcidid><orcidid>https://orcid.org/0000-0002-0477-5511</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1552-4450 |
ispartof | Nature chemical biology, 2017-04, Vol.13 (4), p.446-450 |
issn | 1552-4450 1552-4469 |
language | eng |
recordid | cdi_proquest_miscellaneous_1897374159 |
source | MEDLINE; Nature; SpringerLink Journals - AutoHoldings |
subjects | 631/92/2783 631/92/469 631/92/612 631/92/96 Amino acids Biochemical Engineering Biochemistry Bioorganic Chemistry Cell Biology Chemistry Chemistry/Food Science E coli Escherichia coli Escherichia coli - genetics Eukaryota - genetics Eukaryotes Feasibility studies Genetic Code - genetics Genetic Engineering HEK293 Cells Humans Mammals Molecular Conformation Ribonucleic acid RNA RNA, Transfer - genetics RNA, Transfer - metabolism Saccharomyces cerevisiae Tryptophan-tRNA Ligase - metabolism |
title | An orthogonalized platform for genetic code expansion in both bacteria and eukaryotes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T12%3A04%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20orthogonalized%20platform%20for%20genetic%20code%20expansion%20in%20both%20bacteria%20and%20eukaryotes&rft.jtitle=Nature%20chemical%20biology&rft.au=Italia,%20James%20S&rft.date=2017-04-01&rft.volume=13&rft.issue=4&rft.spage=446&rft.epage=450&rft.pages=446-450&rft.issn=1552-4450&rft.eissn=1552-4469&rft_id=info:doi/10.1038/nchembio.2312&rft_dat=%3Cproquest_cross%3E4322024023%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1892256776&rft_id=info:pmid/28192410&rfr_iscdi=true |