An orthogonalized platform for genetic code expansion in both bacteria and eukaryotes

In Escherichia coli , replacement of the endogenous tryptophanyl–tRNA synthetase–tRNA pair with its counterpart from Saccharomyces cerevisiae liberates the bacterial counterpart for directed evolution to incorporate unnatural amino acids in both E. coli and eukaryotes. In this study, we demonstrate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature chemical biology 2017-04, Vol.13 (4), p.446-450
Hauptverfasser: Italia, James S, Addy, Partha Sarathi, Wrobel, Chester J J, Crawford, Lisa A, Lajoie, Marc J, Zheng, Yunan, Chatterjee, Abhishek
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 450
container_issue 4
container_start_page 446
container_title Nature chemical biology
container_volume 13
creator Italia, James S
Addy, Partha Sarathi
Wrobel, Chester J J
Crawford, Lisa A
Lajoie, Marc J
Zheng, Yunan
Chatterjee, Abhishek
description In Escherichia coli , replacement of the endogenous tryptophanyl–tRNA synthetase–tRNA pair with its counterpart from Saccharomyces cerevisiae liberates the bacterial counterpart for directed evolution to incorporate unnatural amino acids in both E. coli and eukaryotes. In this study, we demonstrate the feasibility of expanding the genetic code of Escherichia coli using its own tryptophanyl–tRNA synthetase and tRNA (TrpRS–tRNA Trp ) pair. This was made possible by first functionally replacing this endogenous pair with an E. coli –optimized counterpart from Saccharomyces cerevisiae , and then reintroducing the liberated E. coli TrpRS–tRNA Trp pair into the resulting strain as a nonsense suppressor, which was then followed by its directed evolution to genetically encode several new unnatural amino acids (UAAs). These engineered TrpRS–tRNA Trp variants were also able to drive efficient UAA mutagenesis in mammalian cells. Since bacteria-derived aminoacyl–tRNA synthetase (aaRS)–tRNA pairs are typically orthogonal in eukaryotes, our work provides a general strategy to develop additional aaRS–tRNA pairs that can be used for UAA mutagenesis of proteins expressed in both E. coli and eukaryotes.
doi_str_mv 10.1038/nchembio.2312
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1897374159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4322024023</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-548d344030ff136c41725c23133ef7e75e58c4d8387fecc44cf35c840c305d293</originalsourceid><addsrcrecordid>eNptkM1LwzAYh4Mobk6PXiXgxUtnPtv0OIZfMPDiziVN326dbVKTFtS_3s5tIuIlb-B9-L38HoQuKZlSwtWtNWto8spNGafsCI2plCwSIk6Pf_6SjNBZCBtCeBxTdYpGTNGUCUrGaDmz2Plu7VbO6rr6hAK3te5K5xs8PHgFFrrKYOMKwPDeahsqZ3Flce66Nc616cBXGmtbYOhftf9wHYRzdFLqOsDFfk7Q8v7uZf4YLZ4fnuazRWR4yrtIClVwIQgnZUl5bARNmDRDEc6hTCCRIJURheIqKcEYIUzJpVGCGE5kwVI-QTe73Na7tx5ClzVVMFDX2oLrQ0ZVmvBEULlFr_-gG9f7ofM3xZiMkyQeqGhHGe9C8FBmra-aoVVGSbb1nR18Z1vfA3-1T-3zBoof-iB4AKY7IAwruwL_6-y_iV_3KYxK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1892256776</pqid></control><display><type>article</type><title>An orthogonalized platform for genetic code expansion in both bacteria and eukaryotes</title><source>MEDLINE</source><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Italia, James S ; Addy, Partha Sarathi ; Wrobel, Chester J J ; Crawford, Lisa A ; Lajoie, Marc J ; Zheng, Yunan ; Chatterjee, Abhishek</creator><creatorcontrib>Italia, James S ; Addy, Partha Sarathi ; Wrobel, Chester J J ; Crawford, Lisa A ; Lajoie, Marc J ; Zheng, Yunan ; Chatterjee, Abhishek</creatorcontrib><description>In Escherichia coli , replacement of the endogenous tryptophanyl–tRNA synthetase–tRNA pair with its counterpart from Saccharomyces cerevisiae liberates the bacterial counterpart for directed evolution to incorporate unnatural amino acids in both E. coli and eukaryotes. In this study, we demonstrate the feasibility of expanding the genetic code of Escherichia coli using its own tryptophanyl–tRNA synthetase and tRNA (TrpRS–tRNA Trp ) pair. This was made possible by first functionally replacing this endogenous pair with an E. coli –optimized counterpart from Saccharomyces cerevisiae , and then reintroducing the liberated E. coli TrpRS–tRNA Trp pair into the resulting strain as a nonsense suppressor, which was then followed by its directed evolution to genetically encode several new unnatural amino acids (UAAs). These engineered TrpRS–tRNA Trp variants were also able to drive efficient UAA mutagenesis in mammalian cells. Since bacteria-derived aminoacyl–tRNA synthetase (aaRS)–tRNA pairs are typically orthogonal in eukaryotes, our work provides a general strategy to develop additional aaRS–tRNA pairs that can be used for UAA mutagenesis of proteins expressed in both E. coli and eukaryotes.</description><identifier>ISSN: 1552-4450</identifier><identifier>EISSN: 1552-4469</identifier><identifier>DOI: 10.1038/nchembio.2312</identifier><identifier>PMID: 28192410</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/92/2783 ; 631/92/469 ; 631/92/612 ; 631/92/96 ; Amino acids ; Biochemical Engineering ; Biochemistry ; Bioorganic Chemistry ; Cell Biology ; Chemistry ; Chemistry/Food Science ; E coli ; Escherichia coli ; Escherichia coli - genetics ; Eukaryota - genetics ; Eukaryotes ; Feasibility studies ; Genetic Code - genetics ; Genetic Engineering ; HEK293 Cells ; Humans ; Mammals ; Molecular Conformation ; Ribonucleic acid ; RNA ; RNA, Transfer - genetics ; RNA, Transfer - metabolism ; Saccharomyces cerevisiae ; Tryptophan-tRNA Ligase - metabolism</subject><ispartof>Nature chemical biology, 2017-04, Vol.13 (4), p.446-450</ispartof><rights>Springer Nature America, Inc. 2017</rights><rights>Copyright Nature Publishing Group Apr 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-548d344030ff136c41725c23133ef7e75e58c4d8387fecc44cf35c840c305d293</citedby><cites>FETCH-LOGICAL-c393t-548d344030ff136c41725c23133ef7e75e58c4d8387fecc44cf35c840c305d293</cites><orcidid>0000-0003-2653-5516 ; 0000-0002-0477-5511</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nchembio.2312$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nchembio.2312$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28192410$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Italia, James S</creatorcontrib><creatorcontrib>Addy, Partha Sarathi</creatorcontrib><creatorcontrib>Wrobel, Chester J J</creatorcontrib><creatorcontrib>Crawford, Lisa A</creatorcontrib><creatorcontrib>Lajoie, Marc J</creatorcontrib><creatorcontrib>Zheng, Yunan</creatorcontrib><creatorcontrib>Chatterjee, Abhishek</creatorcontrib><title>An orthogonalized platform for genetic code expansion in both bacteria and eukaryotes</title><title>Nature chemical biology</title><addtitle>Nat Chem Biol</addtitle><addtitle>Nat Chem Biol</addtitle><description>In Escherichia coli , replacement of the endogenous tryptophanyl–tRNA synthetase–tRNA pair with its counterpart from Saccharomyces cerevisiae liberates the bacterial counterpart for directed evolution to incorporate unnatural amino acids in both E. coli and eukaryotes. In this study, we demonstrate the feasibility of expanding the genetic code of Escherichia coli using its own tryptophanyl–tRNA synthetase and tRNA (TrpRS–tRNA Trp ) pair. This was made possible by first functionally replacing this endogenous pair with an E. coli –optimized counterpart from Saccharomyces cerevisiae , and then reintroducing the liberated E. coli TrpRS–tRNA Trp pair into the resulting strain as a nonsense suppressor, which was then followed by its directed evolution to genetically encode several new unnatural amino acids (UAAs). These engineered TrpRS–tRNA Trp variants were also able to drive efficient UAA mutagenesis in mammalian cells. Since bacteria-derived aminoacyl–tRNA synthetase (aaRS)–tRNA pairs are typically orthogonal in eukaryotes, our work provides a general strategy to develop additional aaRS–tRNA pairs that can be used for UAA mutagenesis of proteins expressed in both E. coli and eukaryotes.</description><subject>631/92/2783</subject><subject>631/92/469</subject><subject>631/92/612</subject><subject>631/92/96</subject><subject>Amino acids</subject><subject>Biochemical Engineering</subject><subject>Biochemistry</subject><subject>Bioorganic Chemistry</subject><subject>Cell Biology</subject><subject>Chemistry</subject><subject>Chemistry/Food Science</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Eukaryota - genetics</subject><subject>Eukaryotes</subject><subject>Feasibility studies</subject><subject>Genetic Code - genetics</subject><subject>Genetic Engineering</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Mammals</subject><subject>Molecular Conformation</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA, Transfer - genetics</subject><subject>RNA, Transfer - metabolism</subject><subject>Saccharomyces cerevisiae</subject><subject>Tryptophan-tRNA Ligase - metabolism</subject><issn>1552-4450</issn><issn>1552-4469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNptkM1LwzAYh4Mobk6PXiXgxUtnPtv0OIZfMPDiziVN326dbVKTFtS_3s5tIuIlb-B9-L38HoQuKZlSwtWtNWto8spNGafsCI2plCwSIk6Pf_6SjNBZCBtCeBxTdYpGTNGUCUrGaDmz2Plu7VbO6rr6hAK3te5K5xs8PHgFFrrKYOMKwPDeahsqZ3Flce66Nc616cBXGmtbYOhftf9wHYRzdFLqOsDFfk7Q8v7uZf4YLZ4fnuazRWR4yrtIClVwIQgnZUl5bARNmDRDEc6hTCCRIJURheIqKcEYIUzJpVGCGE5kwVI-QTe73Na7tx5ClzVVMFDX2oLrQ0ZVmvBEULlFr_-gG9f7ofM3xZiMkyQeqGhHGe9C8FBmra-aoVVGSbb1nR18Z1vfA3-1T-3zBoof-iB4AKY7IAwruwL_6-y_iV_3KYxK</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Italia, James S</creator><creator>Addy, Partha Sarathi</creator><creator>Wrobel, Chester J J</creator><creator>Crawford, Lisa A</creator><creator>Lajoie, Marc J</creator><creator>Zheng, Yunan</creator><creator>Chatterjee, Abhishek</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0003-2653-5516</orcidid><orcidid>https://orcid.org/0000-0002-0477-5511</orcidid></search><sort><creationdate>20170401</creationdate><title>An orthogonalized platform for genetic code expansion in both bacteria and eukaryotes</title><author>Italia, James S ; Addy, Partha Sarathi ; Wrobel, Chester J J ; Crawford, Lisa A ; Lajoie, Marc J ; Zheng, Yunan ; Chatterjee, Abhishek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-548d344030ff136c41725c23133ef7e75e58c4d8387fecc44cf35c840c305d293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>631/92/2783</topic><topic>631/92/469</topic><topic>631/92/612</topic><topic>631/92/96</topic><topic>Amino acids</topic><topic>Biochemical Engineering</topic><topic>Biochemistry</topic><topic>Bioorganic Chemistry</topic><topic>Cell Biology</topic><topic>Chemistry</topic><topic>Chemistry/Food Science</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Eukaryota - genetics</topic><topic>Eukaryotes</topic><topic>Feasibility studies</topic><topic>Genetic Code - genetics</topic><topic>Genetic Engineering</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Mammals</topic><topic>Molecular Conformation</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA, Transfer - genetics</topic><topic>RNA, Transfer - metabolism</topic><topic>Saccharomyces cerevisiae</topic><topic>Tryptophan-tRNA Ligase - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Italia, James S</creatorcontrib><creatorcontrib>Addy, Partha Sarathi</creatorcontrib><creatorcontrib>Wrobel, Chester J J</creatorcontrib><creatorcontrib>Crawford, Lisa A</creatorcontrib><creatorcontrib>Lajoie, Marc J</creatorcontrib><creatorcontrib>Zheng, Yunan</creatorcontrib><creatorcontrib>Chatterjee, Abhishek</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><jtitle>Nature chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Italia, James S</au><au>Addy, Partha Sarathi</au><au>Wrobel, Chester J J</au><au>Crawford, Lisa A</au><au>Lajoie, Marc J</au><au>Zheng, Yunan</au><au>Chatterjee, Abhishek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An orthogonalized platform for genetic code expansion in both bacteria and eukaryotes</atitle><jtitle>Nature chemical biology</jtitle><stitle>Nat Chem Biol</stitle><addtitle>Nat Chem Biol</addtitle><date>2017-04-01</date><risdate>2017</risdate><volume>13</volume><issue>4</issue><spage>446</spage><epage>450</epage><pages>446-450</pages><issn>1552-4450</issn><eissn>1552-4469</eissn><abstract>In Escherichia coli , replacement of the endogenous tryptophanyl–tRNA synthetase–tRNA pair with its counterpart from Saccharomyces cerevisiae liberates the bacterial counterpart for directed evolution to incorporate unnatural amino acids in both E. coli and eukaryotes. In this study, we demonstrate the feasibility of expanding the genetic code of Escherichia coli using its own tryptophanyl–tRNA synthetase and tRNA (TrpRS–tRNA Trp ) pair. This was made possible by first functionally replacing this endogenous pair with an E. coli –optimized counterpart from Saccharomyces cerevisiae , and then reintroducing the liberated E. coli TrpRS–tRNA Trp pair into the resulting strain as a nonsense suppressor, which was then followed by its directed evolution to genetically encode several new unnatural amino acids (UAAs). These engineered TrpRS–tRNA Trp variants were also able to drive efficient UAA mutagenesis in mammalian cells. Since bacteria-derived aminoacyl–tRNA synthetase (aaRS)–tRNA pairs are typically orthogonal in eukaryotes, our work provides a general strategy to develop additional aaRS–tRNA pairs that can be used for UAA mutagenesis of proteins expressed in both E. coli and eukaryotes.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>28192410</pmid><doi>10.1038/nchembio.2312</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-2653-5516</orcidid><orcidid>https://orcid.org/0000-0002-0477-5511</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1552-4450
ispartof Nature chemical biology, 2017-04, Vol.13 (4), p.446-450
issn 1552-4450
1552-4469
language eng
recordid cdi_proquest_miscellaneous_1897374159
source MEDLINE; Nature; SpringerLink Journals - AutoHoldings
subjects 631/92/2783
631/92/469
631/92/612
631/92/96
Amino acids
Biochemical Engineering
Biochemistry
Bioorganic Chemistry
Cell Biology
Chemistry
Chemistry/Food Science
E coli
Escherichia coli
Escherichia coli - genetics
Eukaryota - genetics
Eukaryotes
Feasibility studies
Genetic Code - genetics
Genetic Engineering
HEK293 Cells
Humans
Mammals
Molecular Conformation
Ribonucleic acid
RNA
RNA, Transfer - genetics
RNA, Transfer - metabolism
Saccharomyces cerevisiae
Tryptophan-tRNA Ligase - metabolism
title An orthogonalized platform for genetic code expansion in both bacteria and eukaryotes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T12%3A04%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20orthogonalized%20platform%20for%20genetic%20code%20expansion%20in%20both%20bacteria%20and%20eukaryotes&rft.jtitle=Nature%20chemical%20biology&rft.au=Italia,%20James%20S&rft.date=2017-04-01&rft.volume=13&rft.issue=4&rft.spage=446&rft.epage=450&rft.pages=446-450&rft.issn=1552-4450&rft.eissn=1552-4469&rft_id=info:doi/10.1038/nchembio.2312&rft_dat=%3Cproquest_cross%3E4322024023%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1892256776&rft_id=info:pmid/28192410&rfr_iscdi=true