Daytime restricted feeding modifies the daily regulation of fatty acid β-oxidation and the lipoprotein profile in rats

Daytime restricted feeding (2 h of food access from 12.00 to 14.00 hours for 3 weeks) is an experimental protocol that modifies the relationship between metabolic networks and the circadian molecular clock. The precise anatomical locus that controls the biochemical and physiological adaptations to o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:British journal of nutrition 2017-04, Vol.117 (7), p.930-941
Hauptverfasser: Rivera-Zavala, J. B., Molina-Aguilar, C., Pérez-Mendoza, M., Olguín-Martínez, M., Hernández-Muñoz, R., Báez-Ruiz, G. A., Díaz-Muñoz, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 941
container_issue 7
container_start_page 930
container_title British journal of nutrition
container_volume 117
creator Rivera-Zavala, J. B.
Molina-Aguilar, C.
Pérez-Mendoza, M.
Olguín-Martínez, M.
Hernández-Muñoz, R.
Báez-Ruiz, G. A.
Díaz-Muñoz, M.
description Daytime restricted feeding (2 h of food access from 12.00 to 14.00 hours for 3 weeks) is an experimental protocol that modifies the relationship between metabolic networks and the circadian molecular clock. The precise anatomical locus that controls the biochemical and physiological adaptations to optimise nutrient use is unknown. We explored the changes in liver oxidative lipid handling, such as β-oxidation and its regulation, as well as adaptations in the lipoprotein profile. It was found that daytime restricted feeding promoted an elevation of circulating ketone bodies before mealtime, an altered hepatic daily rhythmicity of 14CO2 production from radioactive palmitic acid, and an up-regulation of the fatty acid oxidation activators, the α-subunit of AMP-activated protein kinase (AMPK), the deacetylase silent mating type information regulation homolog 1, and the transcriptional factor PPARγ-1α coactivator. An increased localisation of phosphorylated α-subunit of AMPK in the periportal hepatocytes was also observed. Liver hepatic lipase C, important for lipoprotein transformation, showed a change of daily phase with a peak at the time of food access. In serum, there was an increase of LDL, which was responsible for a net elevation of circulating cholesterol. We conclude that our results indicate an enhanced fasting response in the liver during daily synchronisation to food access, which involves altered metabolic and cellular control of fatty acid oxidation as well a significant elevation of serum LDL. These adaptations could be part of the metabolic input that underlies the expression of the food-entrained oscillator.
doi_str_mv 10.1017/S0007114517000800
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1896894319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0007114517000800</cupid><sourcerecordid>1896894319</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-7e36a8facb80d2ba22536c901fde0d6f6f8aeaff86f994d00533a49c1d68b4943</originalsourceid><addsrcrecordid>eNp9kD1OxDAQhS0EguXnADTIJU3ATrKOXSL-JSQKoI4m8XgxSuLFdgR7LQ7CmfCyCw0S1Yz0vvdG8wg55OyEM16dPjDGKs7LKa_SJhnbIBNeVtMsFyLfJJOlnC31HbIbwsuS4Uxtk51cljJXhZqQtwtYRNsj9Riit21ETQ2itsOM9k5bYzHQ-IxUg-0WiZqNHUTrBuoMNRDjgkJrNf38yNy71SsJBv3t6ezczb2LaAeaprEd0rR6iGGfbBnoAh6s5x55urp8PL_J7u6vb8_P7rK2kDJmFRYCpIG2kUznDeT5tBCtYtxoZFoYYSQgGCOFUarUjE2LAkrVci1kU6qy2CPHq9x0_3VMP9a9DS12HQzoxlBzqYRMHFcJ5Su09S4Ej6aee9uDX9Sc1cu-6z99J8_ROn5setS_jp-CE1CsQ6FvvNUzrF_c6If08z-xX83YjN4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1896894319</pqid></control><display><type>article</type><title>Daytime restricted feeding modifies the daily regulation of fatty acid β-oxidation and the lipoprotein profile in rats</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><source>Cambridge University Press Journals Complete</source><creator>Rivera-Zavala, J. B. ; Molina-Aguilar, C. ; Pérez-Mendoza, M. ; Olguín-Martínez, M. ; Hernández-Muñoz, R. ; Báez-Ruiz, G. A. ; Díaz-Muñoz, M.</creator><creatorcontrib>Rivera-Zavala, J. B. ; Molina-Aguilar, C. ; Pérez-Mendoza, M. ; Olguín-Martínez, M. ; Hernández-Muñoz, R. ; Báez-Ruiz, G. A. ; Díaz-Muñoz, M.</creatorcontrib><description>Daytime restricted feeding (2 h of food access from 12.00 to 14.00 hours for 3 weeks) is an experimental protocol that modifies the relationship between metabolic networks and the circadian molecular clock. The precise anatomical locus that controls the biochemical and physiological adaptations to optimise nutrient use is unknown. We explored the changes in liver oxidative lipid handling, such as β-oxidation and its regulation, as well as adaptations in the lipoprotein profile. It was found that daytime restricted feeding promoted an elevation of circulating ketone bodies before mealtime, an altered hepatic daily rhythmicity of 14CO2 production from radioactive palmitic acid, and an up-regulation of the fatty acid oxidation activators, the α-subunit of AMP-activated protein kinase (AMPK), the deacetylase silent mating type information regulation homolog 1, and the transcriptional factor PPARγ-1α coactivator. An increased localisation of phosphorylated α-subunit of AMPK in the periportal hepatocytes was also observed. Liver hepatic lipase C, important for lipoprotein transformation, showed a change of daily phase with a peak at the time of food access. In serum, there was an increase of LDL, which was responsible for a net elevation of circulating cholesterol. We conclude that our results indicate an enhanced fasting response in the liver during daily synchronisation to food access, which involves altered metabolic and cellular control of fatty acid oxidation as well a significant elevation of serum LDL. These adaptations could be part of the metabolic input that underlies the expression of the food-entrained oscillator.</description><identifier>ISSN: 0007-1145</identifier><identifier>EISSN: 1475-2662</identifier><identifier>DOI: 10.1017/S0007114517000800</identifier><identifier>PMID: 28482939</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Active Transport, Cell Nucleus ; AMP-Activated Protein Kinases - metabolism ; Animals ; Circadian Clocks ; Fatty Acids - metabolism ; Feeding Behavior ; Hypercholesterolemia - blood ; Hypercholesterolemia - etiology ; Hypercholesterolemia - metabolism ; Hypercholesterolemia - pathology ; Ketone Bodies - blood ; Ketosis - blood ; Ketosis - etiology ; Ketosis - metabolism ; Ketosis - pathology ; Lipase - metabolism ; Lipoproteins, LDL - blood ; Liver - enzymology ; Liver - metabolism ; Liver - pathology ; Male ; Metabolism and Metabolic Studies ; Oxidation-Reduction ; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - metabolism ; Phosphorylation ; Protein Processing, Post-Translational ; Random Allocation ; Rats, Wistar ; Sirtuin 1 - metabolism</subject><ispartof>British journal of nutrition, 2017-04, Vol.117 (7), p.930-941</ispartof><rights>Copyright © The Authors 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-7e36a8facb80d2ba22536c901fde0d6f6f8aeaff86f994d00533a49c1d68b4943</citedby><cites>FETCH-LOGICAL-c388t-7e36a8facb80d2ba22536c901fde0d6f6f8aeaff86f994d00533a49c1d68b4943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0007114517000800/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27903,27904,55606</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28482939$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rivera-Zavala, J. B.</creatorcontrib><creatorcontrib>Molina-Aguilar, C.</creatorcontrib><creatorcontrib>Pérez-Mendoza, M.</creatorcontrib><creatorcontrib>Olguín-Martínez, M.</creatorcontrib><creatorcontrib>Hernández-Muñoz, R.</creatorcontrib><creatorcontrib>Báez-Ruiz, G. A.</creatorcontrib><creatorcontrib>Díaz-Muñoz, M.</creatorcontrib><title>Daytime restricted feeding modifies the daily regulation of fatty acid β-oxidation and the lipoprotein profile in rats</title><title>British journal of nutrition</title><addtitle>Br J Nutr</addtitle><description>Daytime restricted feeding (2 h of food access from 12.00 to 14.00 hours for 3 weeks) is an experimental protocol that modifies the relationship between metabolic networks and the circadian molecular clock. The precise anatomical locus that controls the biochemical and physiological adaptations to optimise nutrient use is unknown. We explored the changes in liver oxidative lipid handling, such as β-oxidation and its regulation, as well as adaptations in the lipoprotein profile. It was found that daytime restricted feeding promoted an elevation of circulating ketone bodies before mealtime, an altered hepatic daily rhythmicity of 14CO2 production from radioactive palmitic acid, and an up-regulation of the fatty acid oxidation activators, the α-subunit of AMP-activated protein kinase (AMPK), the deacetylase silent mating type information regulation homolog 1, and the transcriptional factor PPARγ-1α coactivator. An increased localisation of phosphorylated α-subunit of AMPK in the periportal hepatocytes was also observed. Liver hepatic lipase C, important for lipoprotein transformation, showed a change of daily phase with a peak at the time of food access. In serum, there was an increase of LDL, which was responsible for a net elevation of circulating cholesterol. We conclude that our results indicate an enhanced fasting response in the liver during daily synchronisation to food access, which involves altered metabolic and cellular control of fatty acid oxidation as well a significant elevation of serum LDL. These adaptations could be part of the metabolic input that underlies the expression of the food-entrained oscillator.</description><subject>Active Transport, Cell Nucleus</subject><subject>AMP-Activated Protein Kinases - metabolism</subject><subject>Animals</subject><subject>Circadian Clocks</subject><subject>Fatty Acids - metabolism</subject><subject>Feeding Behavior</subject><subject>Hypercholesterolemia - blood</subject><subject>Hypercholesterolemia - etiology</subject><subject>Hypercholesterolemia - metabolism</subject><subject>Hypercholesterolemia - pathology</subject><subject>Ketone Bodies - blood</subject><subject>Ketosis - blood</subject><subject>Ketosis - etiology</subject><subject>Ketosis - metabolism</subject><subject>Ketosis - pathology</subject><subject>Lipase - metabolism</subject><subject>Lipoproteins, LDL - blood</subject><subject>Liver - enzymology</subject><subject>Liver - metabolism</subject><subject>Liver - pathology</subject><subject>Male</subject><subject>Metabolism and Metabolic Studies</subject><subject>Oxidation-Reduction</subject><subject>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - metabolism</subject><subject>Phosphorylation</subject><subject>Protein Processing, Post-Translational</subject><subject>Random Allocation</subject><subject>Rats, Wistar</subject><subject>Sirtuin 1 - metabolism</subject><issn>0007-1145</issn><issn>1475-2662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kD1OxDAQhS0EguXnADTIJU3ATrKOXSL-JSQKoI4m8XgxSuLFdgR7LQ7CmfCyCw0S1Yz0vvdG8wg55OyEM16dPjDGKs7LKa_SJhnbIBNeVtMsFyLfJJOlnC31HbIbwsuS4Uxtk51cljJXhZqQtwtYRNsj9Riit21ETQ2itsOM9k5bYzHQ-IxUg-0WiZqNHUTrBuoMNRDjgkJrNf38yNy71SsJBv3t6ezczb2LaAeaprEd0rR6iGGfbBnoAh6s5x55urp8PL_J7u6vb8_P7rK2kDJmFRYCpIG2kUznDeT5tBCtYtxoZFoYYSQgGCOFUarUjE2LAkrVci1kU6qy2CPHq9x0_3VMP9a9DS12HQzoxlBzqYRMHFcJ5Su09S4Ej6aee9uDX9Sc1cu-6z99J8_ROn5setS_jp-CE1CsQ6FvvNUzrF_c6If08z-xX83YjN4</recordid><startdate>20170414</startdate><enddate>20170414</enddate><creator>Rivera-Zavala, J. B.</creator><creator>Molina-Aguilar, C.</creator><creator>Pérez-Mendoza, M.</creator><creator>Olguín-Martínez, M.</creator><creator>Hernández-Muñoz, R.</creator><creator>Báez-Ruiz, G. A.</creator><creator>Díaz-Muñoz, M.</creator><general>Cambridge University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20170414</creationdate><title>Daytime restricted feeding modifies the daily regulation of fatty acid β-oxidation and the lipoprotein profile in rats</title><author>Rivera-Zavala, J. B. ; Molina-Aguilar, C. ; Pérez-Mendoza, M. ; Olguín-Martínez, M. ; Hernández-Muñoz, R. ; Báez-Ruiz, G. A. ; Díaz-Muñoz, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-7e36a8facb80d2ba22536c901fde0d6f6f8aeaff86f994d00533a49c1d68b4943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Active Transport, Cell Nucleus</topic><topic>AMP-Activated Protein Kinases - metabolism</topic><topic>Animals</topic><topic>Circadian Clocks</topic><topic>Fatty Acids - metabolism</topic><topic>Feeding Behavior</topic><topic>Hypercholesterolemia - blood</topic><topic>Hypercholesterolemia - etiology</topic><topic>Hypercholesterolemia - metabolism</topic><topic>Hypercholesterolemia - pathology</topic><topic>Ketone Bodies - blood</topic><topic>Ketosis - blood</topic><topic>Ketosis - etiology</topic><topic>Ketosis - metabolism</topic><topic>Ketosis - pathology</topic><topic>Lipase - metabolism</topic><topic>Lipoproteins, LDL - blood</topic><topic>Liver - enzymology</topic><topic>Liver - metabolism</topic><topic>Liver - pathology</topic><topic>Male</topic><topic>Metabolism and Metabolic Studies</topic><topic>Oxidation-Reduction</topic><topic>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - metabolism</topic><topic>Phosphorylation</topic><topic>Protein Processing, Post-Translational</topic><topic>Random Allocation</topic><topic>Rats, Wistar</topic><topic>Sirtuin 1 - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rivera-Zavala, J. B.</creatorcontrib><creatorcontrib>Molina-Aguilar, C.</creatorcontrib><creatorcontrib>Pérez-Mendoza, M.</creatorcontrib><creatorcontrib>Olguín-Martínez, M.</creatorcontrib><creatorcontrib>Hernández-Muñoz, R.</creatorcontrib><creatorcontrib>Báez-Ruiz, G. A.</creatorcontrib><creatorcontrib>Díaz-Muñoz, M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>British journal of nutrition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rivera-Zavala, J. B.</au><au>Molina-Aguilar, C.</au><au>Pérez-Mendoza, M.</au><au>Olguín-Martínez, M.</au><au>Hernández-Muñoz, R.</au><au>Báez-Ruiz, G. A.</au><au>Díaz-Muñoz, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Daytime restricted feeding modifies the daily regulation of fatty acid β-oxidation and the lipoprotein profile in rats</atitle><jtitle>British journal of nutrition</jtitle><addtitle>Br J Nutr</addtitle><date>2017-04-14</date><risdate>2017</risdate><volume>117</volume><issue>7</issue><spage>930</spage><epage>941</epage><pages>930-941</pages><issn>0007-1145</issn><eissn>1475-2662</eissn><abstract>Daytime restricted feeding (2 h of food access from 12.00 to 14.00 hours for 3 weeks) is an experimental protocol that modifies the relationship between metabolic networks and the circadian molecular clock. The precise anatomical locus that controls the biochemical and physiological adaptations to optimise nutrient use is unknown. We explored the changes in liver oxidative lipid handling, such as β-oxidation and its regulation, as well as adaptations in the lipoprotein profile. It was found that daytime restricted feeding promoted an elevation of circulating ketone bodies before mealtime, an altered hepatic daily rhythmicity of 14CO2 production from radioactive palmitic acid, and an up-regulation of the fatty acid oxidation activators, the α-subunit of AMP-activated protein kinase (AMPK), the deacetylase silent mating type information regulation homolog 1, and the transcriptional factor PPARγ-1α coactivator. An increased localisation of phosphorylated α-subunit of AMPK in the periportal hepatocytes was also observed. Liver hepatic lipase C, important for lipoprotein transformation, showed a change of daily phase with a peak at the time of food access. In serum, there was an increase of LDL, which was responsible for a net elevation of circulating cholesterol. We conclude that our results indicate an enhanced fasting response in the liver during daily synchronisation to food access, which involves altered metabolic and cellular control of fatty acid oxidation as well a significant elevation of serum LDL. These adaptations could be part of the metabolic input that underlies the expression of the food-entrained oscillator.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><pmid>28482939</pmid><doi>10.1017/S0007114517000800</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0007-1145
ispartof British journal of nutrition, 2017-04, Vol.117 (7), p.930-941
issn 0007-1145
1475-2662
language eng
recordid cdi_proquest_miscellaneous_1896894319
source MEDLINE; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry; Cambridge University Press Journals Complete
subjects Active Transport, Cell Nucleus
AMP-Activated Protein Kinases - metabolism
Animals
Circadian Clocks
Fatty Acids - metabolism
Feeding Behavior
Hypercholesterolemia - blood
Hypercholesterolemia - etiology
Hypercholesterolemia - metabolism
Hypercholesterolemia - pathology
Ketone Bodies - blood
Ketosis - blood
Ketosis - etiology
Ketosis - metabolism
Ketosis - pathology
Lipase - metabolism
Lipoproteins, LDL - blood
Liver - enzymology
Liver - metabolism
Liver - pathology
Male
Metabolism and Metabolic Studies
Oxidation-Reduction
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - metabolism
Phosphorylation
Protein Processing, Post-Translational
Random Allocation
Rats, Wistar
Sirtuin 1 - metabolism
title Daytime restricted feeding modifies the daily regulation of fatty acid β-oxidation and the lipoprotein profile in rats
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A59%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Daytime%20restricted%20feeding%20modifies%20the%20daily%20regulation%20of%20fatty%20acid%20%CE%B2-oxidation%20and%20the%20lipoprotein%20profile%20in%20rats&rft.jtitle=British%20journal%20of%20nutrition&rft.au=Rivera-Zavala,%20J.%20B.&rft.date=2017-04-14&rft.volume=117&rft.issue=7&rft.spage=930&rft.epage=941&rft.pages=930-941&rft.issn=0007-1145&rft.eissn=1475-2662&rft_id=info:doi/10.1017/S0007114517000800&rft_dat=%3Cproquest_cross%3E1896894319%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1896894319&rft_id=info:pmid/28482939&rft_cupid=10_1017_S0007114517000800&rfr_iscdi=true