Daytime restricted feeding modifies the daily regulation of fatty acid β-oxidation and the lipoprotein profile in rats
Daytime restricted feeding (2 h of food access from 12.00 to 14.00 hours for 3 weeks) is an experimental protocol that modifies the relationship between metabolic networks and the circadian molecular clock. The precise anatomical locus that controls the biochemical and physiological adaptations to o...
Gespeichert in:
Veröffentlicht in: | British journal of nutrition 2017-04, Vol.117 (7), p.930-941 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 941 |
---|---|
container_issue | 7 |
container_start_page | 930 |
container_title | British journal of nutrition |
container_volume | 117 |
creator | Rivera-Zavala, J. B. Molina-Aguilar, C. Pérez-Mendoza, M. Olguín-Martínez, M. Hernández-Muñoz, R. Báez-Ruiz, G. A. Díaz-Muñoz, M. |
description | Daytime restricted feeding (2 h of food access from 12.00 to 14.00 hours for 3 weeks) is an experimental protocol that modifies the relationship between metabolic networks and the circadian molecular clock. The precise anatomical locus that controls the biochemical and physiological adaptations to optimise nutrient use is unknown. We explored the changes in liver oxidative lipid handling, such as β-oxidation and its regulation, as well as adaptations in the lipoprotein profile. It was found that daytime restricted feeding promoted an elevation of circulating ketone bodies before mealtime, an altered hepatic daily rhythmicity of 14CO2 production from radioactive palmitic acid, and an up-regulation of the fatty acid oxidation activators, the α-subunit of AMP-activated protein kinase (AMPK), the deacetylase silent mating type information regulation homolog 1, and the transcriptional factor PPARγ-1α coactivator. An increased localisation of phosphorylated α-subunit of AMPK in the periportal hepatocytes was also observed. Liver hepatic lipase C, important for lipoprotein transformation, showed a change of daily phase with a peak at the time of food access. In serum, there was an increase of LDL, which was responsible for a net elevation of circulating cholesterol. We conclude that our results indicate an enhanced fasting response in the liver during daily synchronisation to food access, which involves altered metabolic and cellular control of fatty acid oxidation as well a significant elevation of serum LDL. These adaptations could be part of the metabolic input that underlies the expression of the food-entrained oscillator. |
doi_str_mv | 10.1017/S0007114517000800 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1896894319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0007114517000800</cupid><sourcerecordid>1896894319</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-7e36a8facb80d2ba22536c901fde0d6f6f8aeaff86f994d00533a49c1d68b4943</originalsourceid><addsrcrecordid>eNp9kD1OxDAQhS0EguXnADTIJU3ATrKOXSL-JSQKoI4m8XgxSuLFdgR7LQ7CmfCyCw0S1Yz0vvdG8wg55OyEM16dPjDGKs7LKa_SJhnbIBNeVtMsFyLfJJOlnC31HbIbwsuS4Uxtk51cljJXhZqQtwtYRNsj9Riit21ETQ2itsOM9k5bYzHQ-IxUg-0WiZqNHUTrBuoMNRDjgkJrNf38yNy71SsJBv3t6ezczb2LaAeaprEd0rR6iGGfbBnoAh6s5x55urp8PL_J7u6vb8_P7rK2kDJmFRYCpIG2kUznDeT5tBCtYtxoZFoYYSQgGCOFUarUjE2LAkrVci1kU6qy2CPHq9x0_3VMP9a9DS12HQzoxlBzqYRMHFcJ5Su09S4Ej6aee9uDX9Sc1cu-6z99J8_ROn5setS_jp-CE1CsQ6FvvNUzrF_c6If08z-xX83YjN4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1896894319</pqid></control><display><type>article</type><title>Daytime restricted feeding modifies the daily regulation of fatty acid β-oxidation and the lipoprotein profile in rats</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><source>Cambridge University Press Journals Complete</source><creator>Rivera-Zavala, J. B. ; Molina-Aguilar, C. ; Pérez-Mendoza, M. ; Olguín-Martínez, M. ; Hernández-Muñoz, R. ; Báez-Ruiz, G. A. ; Díaz-Muñoz, M.</creator><creatorcontrib>Rivera-Zavala, J. B. ; Molina-Aguilar, C. ; Pérez-Mendoza, M. ; Olguín-Martínez, M. ; Hernández-Muñoz, R. ; Báez-Ruiz, G. A. ; Díaz-Muñoz, M.</creatorcontrib><description>Daytime restricted feeding (2 h of food access from 12.00 to 14.00 hours for 3 weeks) is an experimental protocol that modifies the relationship between metabolic networks and the circadian molecular clock. The precise anatomical locus that controls the biochemical and physiological adaptations to optimise nutrient use is unknown. We explored the changes in liver oxidative lipid handling, such as β-oxidation and its regulation, as well as adaptations in the lipoprotein profile. It was found that daytime restricted feeding promoted an elevation of circulating ketone bodies before mealtime, an altered hepatic daily rhythmicity of 14CO2 production from radioactive palmitic acid, and an up-regulation of the fatty acid oxidation activators, the α-subunit of AMP-activated protein kinase (AMPK), the deacetylase silent mating type information regulation homolog 1, and the transcriptional factor PPARγ-1α coactivator. An increased localisation of phosphorylated α-subunit of AMPK in the periportal hepatocytes was also observed. Liver hepatic lipase C, important for lipoprotein transformation, showed a change of daily phase with a peak at the time of food access. In serum, there was an increase of LDL, which was responsible for a net elevation of circulating cholesterol. We conclude that our results indicate an enhanced fasting response in the liver during daily synchronisation to food access, which involves altered metabolic and cellular control of fatty acid oxidation as well a significant elevation of serum LDL. These adaptations could be part of the metabolic input that underlies the expression of the food-entrained oscillator.</description><identifier>ISSN: 0007-1145</identifier><identifier>EISSN: 1475-2662</identifier><identifier>DOI: 10.1017/S0007114517000800</identifier><identifier>PMID: 28482939</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Active Transport, Cell Nucleus ; AMP-Activated Protein Kinases - metabolism ; Animals ; Circadian Clocks ; Fatty Acids - metabolism ; Feeding Behavior ; Hypercholesterolemia - blood ; Hypercholesterolemia - etiology ; Hypercholesterolemia - metabolism ; Hypercholesterolemia - pathology ; Ketone Bodies - blood ; Ketosis - blood ; Ketosis - etiology ; Ketosis - metabolism ; Ketosis - pathology ; Lipase - metabolism ; Lipoproteins, LDL - blood ; Liver - enzymology ; Liver - metabolism ; Liver - pathology ; Male ; Metabolism and Metabolic Studies ; Oxidation-Reduction ; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - metabolism ; Phosphorylation ; Protein Processing, Post-Translational ; Random Allocation ; Rats, Wistar ; Sirtuin 1 - metabolism</subject><ispartof>British journal of nutrition, 2017-04, Vol.117 (7), p.930-941</ispartof><rights>Copyright © The Authors 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-7e36a8facb80d2ba22536c901fde0d6f6f8aeaff86f994d00533a49c1d68b4943</citedby><cites>FETCH-LOGICAL-c388t-7e36a8facb80d2ba22536c901fde0d6f6f8aeaff86f994d00533a49c1d68b4943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0007114517000800/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27903,27904,55606</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28482939$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rivera-Zavala, J. B.</creatorcontrib><creatorcontrib>Molina-Aguilar, C.</creatorcontrib><creatorcontrib>Pérez-Mendoza, M.</creatorcontrib><creatorcontrib>Olguín-Martínez, M.</creatorcontrib><creatorcontrib>Hernández-Muñoz, R.</creatorcontrib><creatorcontrib>Báez-Ruiz, G. A.</creatorcontrib><creatorcontrib>Díaz-Muñoz, M.</creatorcontrib><title>Daytime restricted feeding modifies the daily regulation of fatty acid β-oxidation and the lipoprotein profile in rats</title><title>British journal of nutrition</title><addtitle>Br J Nutr</addtitle><description>Daytime restricted feeding (2 h of food access from 12.00 to 14.00 hours for 3 weeks) is an experimental protocol that modifies the relationship between metabolic networks and the circadian molecular clock. The precise anatomical locus that controls the biochemical and physiological adaptations to optimise nutrient use is unknown. We explored the changes in liver oxidative lipid handling, such as β-oxidation and its regulation, as well as adaptations in the lipoprotein profile. It was found that daytime restricted feeding promoted an elevation of circulating ketone bodies before mealtime, an altered hepatic daily rhythmicity of 14CO2 production from radioactive palmitic acid, and an up-regulation of the fatty acid oxidation activators, the α-subunit of AMP-activated protein kinase (AMPK), the deacetylase silent mating type information regulation homolog 1, and the transcriptional factor PPARγ-1α coactivator. An increased localisation of phosphorylated α-subunit of AMPK in the periportal hepatocytes was also observed. Liver hepatic lipase C, important for lipoprotein transformation, showed a change of daily phase with a peak at the time of food access. In serum, there was an increase of LDL, which was responsible for a net elevation of circulating cholesterol. We conclude that our results indicate an enhanced fasting response in the liver during daily synchronisation to food access, which involves altered metabolic and cellular control of fatty acid oxidation as well a significant elevation of serum LDL. These adaptations could be part of the metabolic input that underlies the expression of the food-entrained oscillator.</description><subject>Active Transport, Cell Nucleus</subject><subject>AMP-Activated Protein Kinases - metabolism</subject><subject>Animals</subject><subject>Circadian Clocks</subject><subject>Fatty Acids - metabolism</subject><subject>Feeding Behavior</subject><subject>Hypercholesterolemia - blood</subject><subject>Hypercholesterolemia - etiology</subject><subject>Hypercholesterolemia - metabolism</subject><subject>Hypercholesterolemia - pathology</subject><subject>Ketone Bodies - blood</subject><subject>Ketosis - blood</subject><subject>Ketosis - etiology</subject><subject>Ketosis - metabolism</subject><subject>Ketosis - pathology</subject><subject>Lipase - metabolism</subject><subject>Lipoproteins, LDL - blood</subject><subject>Liver - enzymology</subject><subject>Liver - metabolism</subject><subject>Liver - pathology</subject><subject>Male</subject><subject>Metabolism and Metabolic Studies</subject><subject>Oxidation-Reduction</subject><subject>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - metabolism</subject><subject>Phosphorylation</subject><subject>Protein Processing, Post-Translational</subject><subject>Random Allocation</subject><subject>Rats, Wistar</subject><subject>Sirtuin 1 - metabolism</subject><issn>0007-1145</issn><issn>1475-2662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kD1OxDAQhS0EguXnADTIJU3ATrKOXSL-JSQKoI4m8XgxSuLFdgR7LQ7CmfCyCw0S1Yz0vvdG8wg55OyEM16dPjDGKs7LKa_SJhnbIBNeVtMsFyLfJJOlnC31HbIbwsuS4Uxtk51cljJXhZqQtwtYRNsj9Riit21ETQ2itsOM9k5bYzHQ-IxUg-0WiZqNHUTrBuoMNRDjgkJrNf38yNy71SsJBv3t6ezczb2LaAeaprEd0rR6iGGfbBnoAh6s5x55urp8PL_J7u6vb8_P7rK2kDJmFRYCpIG2kUznDeT5tBCtYtxoZFoYYSQgGCOFUarUjE2LAkrVci1kU6qy2CPHq9x0_3VMP9a9DS12HQzoxlBzqYRMHFcJ5Su09S4Ej6aee9uDX9Sc1cu-6z99J8_ROn5setS_jp-CE1CsQ6FvvNUzrF_c6If08z-xX83YjN4</recordid><startdate>20170414</startdate><enddate>20170414</enddate><creator>Rivera-Zavala, J. B.</creator><creator>Molina-Aguilar, C.</creator><creator>Pérez-Mendoza, M.</creator><creator>Olguín-Martínez, M.</creator><creator>Hernández-Muñoz, R.</creator><creator>Báez-Ruiz, G. A.</creator><creator>Díaz-Muñoz, M.</creator><general>Cambridge University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20170414</creationdate><title>Daytime restricted feeding modifies the daily regulation of fatty acid β-oxidation and the lipoprotein profile in rats</title><author>Rivera-Zavala, J. B. ; Molina-Aguilar, C. ; Pérez-Mendoza, M. ; Olguín-Martínez, M. ; Hernández-Muñoz, R. ; Báez-Ruiz, G. A. ; Díaz-Muñoz, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-7e36a8facb80d2ba22536c901fde0d6f6f8aeaff86f994d00533a49c1d68b4943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Active Transport, Cell Nucleus</topic><topic>AMP-Activated Protein Kinases - metabolism</topic><topic>Animals</topic><topic>Circadian Clocks</topic><topic>Fatty Acids - metabolism</topic><topic>Feeding Behavior</topic><topic>Hypercholesterolemia - blood</topic><topic>Hypercholesterolemia - etiology</topic><topic>Hypercholesterolemia - metabolism</topic><topic>Hypercholesterolemia - pathology</topic><topic>Ketone Bodies - blood</topic><topic>Ketosis - blood</topic><topic>Ketosis - etiology</topic><topic>Ketosis - metabolism</topic><topic>Ketosis - pathology</topic><topic>Lipase - metabolism</topic><topic>Lipoproteins, LDL - blood</topic><topic>Liver - enzymology</topic><topic>Liver - metabolism</topic><topic>Liver - pathology</topic><topic>Male</topic><topic>Metabolism and Metabolic Studies</topic><topic>Oxidation-Reduction</topic><topic>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - metabolism</topic><topic>Phosphorylation</topic><topic>Protein Processing, Post-Translational</topic><topic>Random Allocation</topic><topic>Rats, Wistar</topic><topic>Sirtuin 1 - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rivera-Zavala, J. B.</creatorcontrib><creatorcontrib>Molina-Aguilar, C.</creatorcontrib><creatorcontrib>Pérez-Mendoza, M.</creatorcontrib><creatorcontrib>Olguín-Martínez, M.</creatorcontrib><creatorcontrib>Hernández-Muñoz, R.</creatorcontrib><creatorcontrib>Báez-Ruiz, G. A.</creatorcontrib><creatorcontrib>Díaz-Muñoz, M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>British journal of nutrition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rivera-Zavala, J. B.</au><au>Molina-Aguilar, C.</au><au>Pérez-Mendoza, M.</au><au>Olguín-Martínez, M.</au><au>Hernández-Muñoz, R.</au><au>Báez-Ruiz, G. A.</au><au>Díaz-Muñoz, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Daytime restricted feeding modifies the daily regulation of fatty acid β-oxidation and the lipoprotein profile in rats</atitle><jtitle>British journal of nutrition</jtitle><addtitle>Br J Nutr</addtitle><date>2017-04-14</date><risdate>2017</risdate><volume>117</volume><issue>7</issue><spage>930</spage><epage>941</epage><pages>930-941</pages><issn>0007-1145</issn><eissn>1475-2662</eissn><abstract>Daytime restricted feeding (2 h of food access from 12.00 to 14.00 hours for 3 weeks) is an experimental protocol that modifies the relationship between metabolic networks and the circadian molecular clock. The precise anatomical locus that controls the biochemical and physiological adaptations to optimise nutrient use is unknown. We explored the changes in liver oxidative lipid handling, such as β-oxidation and its regulation, as well as adaptations in the lipoprotein profile. It was found that daytime restricted feeding promoted an elevation of circulating ketone bodies before mealtime, an altered hepatic daily rhythmicity of 14CO2 production from radioactive palmitic acid, and an up-regulation of the fatty acid oxidation activators, the α-subunit of AMP-activated protein kinase (AMPK), the deacetylase silent mating type information regulation homolog 1, and the transcriptional factor PPARγ-1α coactivator. An increased localisation of phosphorylated α-subunit of AMPK in the periportal hepatocytes was also observed. Liver hepatic lipase C, important for lipoprotein transformation, showed a change of daily phase with a peak at the time of food access. In serum, there was an increase of LDL, which was responsible for a net elevation of circulating cholesterol. We conclude that our results indicate an enhanced fasting response in the liver during daily synchronisation to food access, which involves altered metabolic and cellular control of fatty acid oxidation as well a significant elevation of serum LDL. These adaptations could be part of the metabolic input that underlies the expression of the food-entrained oscillator.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><pmid>28482939</pmid><doi>10.1017/S0007114517000800</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0007-1145 |
ispartof | British journal of nutrition, 2017-04, Vol.117 (7), p.930-941 |
issn | 0007-1145 1475-2662 |
language | eng |
recordid | cdi_proquest_miscellaneous_1896894319 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry; Cambridge University Press Journals Complete |
subjects | Active Transport, Cell Nucleus AMP-Activated Protein Kinases - metabolism Animals Circadian Clocks Fatty Acids - metabolism Feeding Behavior Hypercholesterolemia - blood Hypercholesterolemia - etiology Hypercholesterolemia - metabolism Hypercholesterolemia - pathology Ketone Bodies - blood Ketosis - blood Ketosis - etiology Ketosis - metabolism Ketosis - pathology Lipase - metabolism Lipoproteins, LDL - blood Liver - enzymology Liver - metabolism Liver - pathology Male Metabolism and Metabolic Studies Oxidation-Reduction Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - metabolism Phosphorylation Protein Processing, Post-Translational Random Allocation Rats, Wistar Sirtuin 1 - metabolism |
title | Daytime restricted feeding modifies the daily regulation of fatty acid β-oxidation and the lipoprotein profile in rats |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A59%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Daytime%20restricted%20feeding%20modifies%20the%20daily%20regulation%20of%20fatty%20acid%20%CE%B2-oxidation%20and%20the%20lipoprotein%20profile%20in%20rats&rft.jtitle=British%20journal%20of%20nutrition&rft.au=Rivera-Zavala,%20J.%20B.&rft.date=2017-04-14&rft.volume=117&rft.issue=7&rft.spage=930&rft.epage=941&rft.pages=930-941&rft.issn=0007-1145&rft.eissn=1475-2662&rft_id=info:doi/10.1017/S0007114517000800&rft_dat=%3Cproquest_cross%3E1896894319%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1896894319&rft_id=info:pmid/28482939&rft_cupid=10_1017_S0007114517000800&rfr_iscdi=true |