Probabilistic lower bounds for approximation by shallow perceptron networks

Limitations of approximation capabilities of shallow perceptron networks are investigated. Lower bounds on approximation errors are derived for binary-valued functions on finite domains. It is proven that unless the number of network units is sufficiently large (larger than any polynomial of the log...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural networks 2017-07, Vol.91, p.34-41
Hauptverfasser: Kůrková, Věra, Sanguineti, Marcello
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!