Probabilistic lower bounds for approximation by shallow perceptron networks
Limitations of approximation capabilities of shallow perceptron networks are investigated. Lower bounds on approximation errors are derived for binary-valued functions on finite domains. It is proven that unless the number of network units is sufficiently large (larger than any polynomial of the log...
Gespeichert in:
Veröffentlicht in: | Neural networks 2017-07, Vol.91, p.34-41 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!