Lipostar, a Comprehensive Platform-Neutral Cheminformatics Tool for Lipidomics

To date, the main limitations for LC-MS-based untargeted lipidomics reside in the lack of adequate computational and cheminformatics tools that are able to support the analysis of several thousands of species from biological samples, enabling data mining and automating lipid identification and exter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2017-06, Vol.89 (11), p.6257-6264
Hauptverfasser: Goracci, Laura, Tortorella, Sara, Tiberi, Paolo, Pellegrino, Roberto Maria, Di Veroli, Alessandra, Valeri, Aurora, Cruciani, Gabriele
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6264
container_issue 11
container_start_page 6257
container_title Analytical chemistry (Washington)
container_volume 89
creator Goracci, Laura
Tortorella, Sara
Tiberi, Paolo
Pellegrino, Roberto Maria
Di Veroli, Alessandra
Valeri, Aurora
Cruciani, Gabriele
description To date, the main limitations for LC-MS-based untargeted lipidomics reside in the lack of adequate computational and cheminformatics tools that are able to support the analysis of several thousands of species from biological samples, enabling data mining and automating lipid identification and external prediction processes. To address these issues, we developed Lipostar, novel vendor-neutral high-throughput software that effectively supports both targeted and untargeted LC-MS lipidomics, implementing data acquisition, user-friendly multivariate analysis (to be used for model generation and new sample predictions), and advanced lipid identification protocols that can work with or without the support of preformed lipid databases. Moreover, Lipostar integrates the lipidomic processes with a full metabolite identification (MetID) procedure, essential in drug safety applications and in translational studies. Case studies demonstrating a number of Lipostar features are also presented.
doi_str_mv 10.1021/acs.analchem.7b01259
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1896042445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1913774159</sourcerecordid><originalsourceid>FETCH-LOGICAL-a442t-a733213559fe11181cc9831b6cd8cab0bf095cf077a86dd0eae16bef384014ab3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMo7vrxD0QKXjzYdSZJ2_QoxS9YVg96LtM0xS7tZk1awX9vll0VPHgaZnjed-Bh7AxhhsDxmrSf0Yo6_Wb6WVYB8iTfY1NMOMSpUnyfTQFAxDwDmLAj75cAiIDpIZtwJTNMpZiyxbxdWz-Qu4ooKmy_dubNrHz7YaLnjobGuj5emHFw1EVF-NSuNicaWu2jF2u7KKxR6Ghr24fbCTtoqPPmdDeP2evd7UvxEM-f7h-Lm3lMUvIhpkwIjiJJ8sYgokKtcyWwSnWtNFVQNZAnuoEsI5XWNRgymFamEUoCSqrEMbvc9q6dfR-NH8q-9dp0Ha2MHX2JKk9BcimTgF78QZd2dEFcoHIUWSYxyQMlt5R21ntnmnLt2p7cZ4lQbnyXwXf57bvc-Q6x8135WPWm_gl9Cw4AbIFN_Pfxf51f7pKPBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1913774159</pqid></control><display><type>article</type><title>Lipostar, a Comprehensive Platform-Neutral Cheminformatics Tool for Lipidomics</title><source>American Chemical Society (ACS) Journals</source><creator>Goracci, Laura ; Tortorella, Sara ; Tiberi, Paolo ; Pellegrino, Roberto Maria ; Di Veroli, Alessandra ; Valeri, Aurora ; Cruciani, Gabriele</creator><creatorcontrib>Goracci, Laura ; Tortorella, Sara ; Tiberi, Paolo ; Pellegrino, Roberto Maria ; Di Veroli, Alessandra ; Valeri, Aurora ; Cruciani, Gabriele</creatorcontrib><description>To date, the main limitations for LC-MS-based untargeted lipidomics reside in the lack of adequate computational and cheminformatics tools that are able to support the analysis of several thousands of species from biological samples, enabling data mining and automating lipid identification and external prediction processes. To address these issues, we developed Lipostar, novel vendor-neutral high-throughput software that effectively supports both targeted and untargeted LC-MS lipidomics, implementing data acquisition, user-friendly multivariate analysis (to be used for model generation and new sample predictions), and advanced lipid identification protocols that can work with or without the support of preformed lipid databases. Moreover, Lipostar integrates the lipidomic processes with a full metabolite identification (MetID) procedure, essential in drug safety applications and in translational studies. Case studies demonstrating a number of Lipostar features are also presented.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.7b01259</identifier><identifier>PMID: 28471643</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Biological properties ; Biological samples ; Case studies ; Chemistry ; Computer applications ; Data acquisition ; Data mining ; Data processing ; Informatics ; Lipids ; Metabolites ; Multivariate analysis ; Pharmacovigilance ; Software</subject><ispartof>Analytical chemistry (Washington), 2017-06, Vol.89 (11), p.6257-6264</ispartof><rights>Copyright © 2017 American Chemical Society</rights><rights>Copyright American Chemical Society Jun 6, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a442t-a733213559fe11181cc9831b6cd8cab0bf095cf077a86dd0eae16bef384014ab3</citedby><cites>FETCH-LOGICAL-a442t-a733213559fe11181cc9831b6cd8cab0bf095cf077a86dd0eae16bef384014ab3</cites><orcidid>0000-0002-9282-9013 ; 0000-0002-4162-8692</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.7b01259$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.7b01259$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28471643$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Goracci, Laura</creatorcontrib><creatorcontrib>Tortorella, Sara</creatorcontrib><creatorcontrib>Tiberi, Paolo</creatorcontrib><creatorcontrib>Pellegrino, Roberto Maria</creatorcontrib><creatorcontrib>Di Veroli, Alessandra</creatorcontrib><creatorcontrib>Valeri, Aurora</creatorcontrib><creatorcontrib>Cruciani, Gabriele</creatorcontrib><title>Lipostar, a Comprehensive Platform-Neutral Cheminformatics Tool for Lipidomics</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>To date, the main limitations for LC-MS-based untargeted lipidomics reside in the lack of adequate computational and cheminformatics tools that are able to support the analysis of several thousands of species from biological samples, enabling data mining and automating lipid identification and external prediction processes. To address these issues, we developed Lipostar, novel vendor-neutral high-throughput software that effectively supports both targeted and untargeted LC-MS lipidomics, implementing data acquisition, user-friendly multivariate analysis (to be used for model generation and new sample predictions), and advanced lipid identification protocols that can work with or without the support of preformed lipid databases. Moreover, Lipostar integrates the lipidomic processes with a full metabolite identification (MetID) procedure, essential in drug safety applications and in translational studies. Case studies demonstrating a number of Lipostar features are also presented.</description><subject>Biological properties</subject><subject>Biological samples</subject><subject>Case studies</subject><subject>Chemistry</subject><subject>Computer applications</subject><subject>Data acquisition</subject><subject>Data mining</subject><subject>Data processing</subject><subject>Informatics</subject><subject>Lipids</subject><subject>Metabolites</subject><subject>Multivariate analysis</subject><subject>Pharmacovigilance</subject><subject>Software</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMo7vrxD0QKXjzYdSZJ2_QoxS9YVg96LtM0xS7tZk1awX9vll0VPHgaZnjed-Bh7AxhhsDxmrSf0Yo6_Wb6WVYB8iTfY1NMOMSpUnyfTQFAxDwDmLAj75cAiIDpIZtwJTNMpZiyxbxdWz-Qu4ooKmy_dubNrHz7YaLnjobGuj5emHFw1EVF-NSuNicaWu2jF2u7KKxR6Ghr24fbCTtoqPPmdDeP2evd7UvxEM-f7h-Lm3lMUvIhpkwIjiJJ8sYgokKtcyWwSnWtNFVQNZAnuoEsI5XWNRgymFamEUoCSqrEMbvc9q6dfR-NH8q-9dp0Ha2MHX2JKk9BcimTgF78QZd2dEFcoHIUWSYxyQMlt5R21ntnmnLt2p7cZ4lQbnyXwXf57bvc-Q6x8135WPWm_gl9Cw4AbIFN_Pfxf51f7pKPBA</recordid><startdate>20170606</startdate><enddate>20170606</enddate><creator>Goracci, Laura</creator><creator>Tortorella, Sara</creator><creator>Tiberi, Paolo</creator><creator>Pellegrino, Roberto Maria</creator><creator>Di Veroli, Alessandra</creator><creator>Valeri, Aurora</creator><creator>Cruciani, Gabriele</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9282-9013</orcidid><orcidid>https://orcid.org/0000-0002-4162-8692</orcidid></search><sort><creationdate>20170606</creationdate><title>Lipostar, a Comprehensive Platform-Neutral Cheminformatics Tool for Lipidomics</title><author>Goracci, Laura ; Tortorella, Sara ; Tiberi, Paolo ; Pellegrino, Roberto Maria ; Di Veroli, Alessandra ; Valeri, Aurora ; Cruciani, Gabriele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a442t-a733213559fe11181cc9831b6cd8cab0bf095cf077a86dd0eae16bef384014ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Biological properties</topic><topic>Biological samples</topic><topic>Case studies</topic><topic>Chemistry</topic><topic>Computer applications</topic><topic>Data acquisition</topic><topic>Data mining</topic><topic>Data processing</topic><topic>Informatics</topic><topic>Lipids</topic><topic>Metabolites</topic><topic>Multivariate analysis</topic><topic>Pharmacovigilance</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goracci, Laura</creatorcontrib><creatorcontrib>Tortorella, Sara</creatorcontrib><creatorcontrib>Tiberi, Paolo</creatorcontrib><creatorcontrib>Pellegrino, Roberto Maria</creatorcontrib><creatorcontrib>Di Veroli, Alessandra</creatorcontrib><creatorcontrib>Valeri, Aurora</creatorcontrib><creatorcontrib>Cruciani, Gabriele</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goracci, Laura</au><au>Tortorella, Sara</au><au>Tiberi, Paolo</au><au>Pellegrino, Roberto Maria</au><au>Di Veroli, Alessandra</au><au>Valeri, Aurora</au><au>Cruciani, Gabriele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lipostar, a Comprehensive Platform-Neutral Cheminformatics Tool for Lipidomics</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2017-06-06</date><risdate>2017</risdate><volume>89</volume><issue>11</issue><spage>6257</spage><epage>6264</epage><pages>6257-6264</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>To date, the main limitations for LC-MS-based untargeted lipidomics reside in the lack of adequate computational and cheminformatics tools that are able to support the analysis of several thousands of species from biological samples, enabling data mining and automating lipid identification and external prediction processes. To address these issues, we developed Lipostar, novel vendor-neutral high-throughput software that effectively supports both targeted and untargeted LC-MS lipidomics, implementing data acquisition, user-friendly multivariate analysis (to be used for model generation and new sample predictions), and advanced lipid identification protocols that can work with or without the support of preformed lipid databases. Moreover, Lipostar integrates the lipidomic processes with a full metabolite identification (MetID) procedure, essential in drug safety applications and in translational studies. Case studies demonstrating a number of Lipostar features are also presented.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28471643</pmid><doi>10.1021/acs.analchem.7b01259</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9282-9013</orcidid><orcidid>https://orcid.org/0000-0002-4162-8692</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2017-06, Vol.89 (11), p.6257-6264
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_1896042445
source American Chemical Society (ACS) Journals
subjects Biological properties
Biological samples
Case studies
Chemistry
Computer applications
Data acquisition
Data mining
Data processing
Informatics
Lipids
Metabolites
Multivariate analysis
Pharmacovigilance
Software
title Lipostar, a Comprehensive Platform-Neutral Cheminformatics Tool for Lipidomics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T06%3A26%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lipostar,%20a%20Comprehensive%20Platform-Neutral%20Cheminformatics%20Tool%20for%20Lipidomics&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Goracci,%20Laura&rft.date=2017-06-06&rft.volume=89&rft.issue=11&rft.spage=6257&rft.epage=6264&rft.pages=6257-6264&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.7b01259&rft_dat=%3Cproquest_cross%3E1913774159%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1913774159&rft_id=info:pmid/28471643&rfr_iscdi=true