Characterization of a novel murine model for spontaneous hemorrhagic stroke using in vivo PET and MR multiparametric imaging
The clinical use of Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) has proven to be a strong diagnostic tool in the field of neurology. The reliability of these methods to confirm clinical diagnoses has guided preclinical research to utilize these techniques for the characte...
Gespeichert in:
Veröffentlicht in: | NeuroImage (Orlando, Fla.) Fla.), 2017-07, Vol.155, p.245-256 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 256 |
---|---|
container_issue | |
container_start_page | 245 |
container_title | NeuroImage (Orlando, Fla.) |
container_volume | 155 |
creator | Castaneda Vega, Salvador Weinl, Christine Calaminus, Carsten Wang, Lisa Harant, Maren Ehrlichmann, Walter Thiele, Dennis Kohlhofer, Ursula Reischl, Gerald Hempel, Johann-Martin Ernemann, Ulrike Quintanilla Martinez, Leticia Nordheim, Alfred Pichler, Bernd J. |
description | The clinical use of Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) has proven to be a strong diagnostic tool in the field of neurology. The reliability of these methods to confirm clinical diagnoses has guided preclinical research to utilize these techniques for the characterization of animal disease models.
Previously, we demonstrated that an endothelial cell-specific ablation of the murine Serum Response Factor (SrfiECKO) results in blood brain barrier (BBB) breakdown and hemorrhagic stroke. Taking advantage of this mouse model we here perform a comprehensive longitudinal, multiparametric and in vivo imaging approach to reveal pathophysiological processes occurring before and during the appearance of cerebral microbleeds using combined PET and MRI. We complement our imaging results with data regarding animal behavior and immunohistochemistry.
Our results demonstrate diffusion abnormalities in the cortical brain tissue prior to the onset of cerebral microbleeds. Diffusion reductions were accompanied by significant increments of [18F]FAZA uptake before the onset of the lesions in T2WI. The Open Field behavioral tests revealed reduced activity of SrfiECKO animals, whereas histology confirmed the presence of hemorrhages in cortical regions of the mouse brain and iron deposition at lesion sites with increased hypoxia inducible factor 1α, CD31 and glial fibrillary acidic protein expression.
For the first time, we performed a thorough evaluation of the prodromal period before the occurrence of spontaneous cerebral microbleeds. Using in vivo PET and MRI, we show the pathological tissue changes that occur previous to gross blood brain barrier (BBB) disruption and breakage. In addition, our results show that apparent diffusion coefficient (ADC) reduction may be an early biomarker of BBB disruption proposing an alternate clinical interpretation. Furthermore, our findings remark the usefulness of this novel SrfiECKO mouse model to study underlying mechanisms of hemorrhagic stroke.
•PET-MRI characterization of an endogenous spontaneous stroke model•BBB breakage courses with reductions in water diffusion•Evolution of microangiopathies not associated to amyloid plaque deposition. |
doi_str_mv | 10.1016/j.neuroimage.2017.04.071 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1896040848</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811917303907</els_id><sourcerecordid>1919451141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-2f5a603bce8e8128db8a178e9fbb72185144a20d9100f8cd3634e310e9197ac53</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxS0EoqXwFZAlLlwSZhInsY-wKn-kIhAqZ8txJrteEnuxk5WK-PB4tQUkLpw8ln7z3sw8xjhCiYDtq33paY3BzWZLZQXYlSBK6PABu0RQTaGarnp4qpu6kIjqgj1JaQ8ACoV8zC4qKbq6ku0l-7nZmWjsQtH9MIsLnoeRG-7DkSY-r9F54nMY8mcMkadD8IvxFNbEdzSHGHdm6yxPSwzfiK_J-S13nh_dMfDP17fc-IF__JKFpsUdstFMS8z8afCMPmWPRjMlenb_XrGvb69vN--Lm0_vPmxe3xRWQLUU1diYFurekiSJlRx6abCTpMa-7yqUDQphKhgUAozSDnVbC6oRSKHqjG3qK_byrHuI4ftKadGzS5am6byKRqlaECCFzOiLf9B9WKPP02nMcqJBFJgpeaZsDClFGvUh5p3inUbQp4T0Xv9NSJ8S0iB0Tii3Pr83WPuZhj-NvyPJwJszQPkiR0dRJ-vIWxpcJLvoIbj_u_wCM0CoTg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1919451141</pqid></control><display><type>article</type><title>Characterization of a novel murine model for spontaneous hemorrhagic stroke using in vivo PET and MR multiparametric imaging</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><source>ProQuest Central UK/Ireland</source><creator>Castaneda Vega, Salvador ; Weinl, Christine ; Calaminus, Carsten ; Wang, Lisa ; Harant, Maren ; Ehrlichmann, Walter ; Thiele, Dennis ; Kohlhofer, Ursula ; Reischl, Gerald ; Hempel, Johann-Martin ; Ernemann, Ulrike ; Quintanilla Martinez, Leticia ; Nordheim, Alfred ; Pichler, Bernd J.</creator><creatorcontrib>Castaneda Vega, Salvador ; Weinl, Christine ; Calaminus, Carsten ; Wang, Lisa ; Harant, Maren ; Ehrlichmann, Walter ; Thiele, Dennis ; Kohlhofer, Ursula ; Reischl, Gerald ; Hempel, Johann-Martin ; Ernemann, Ulrike ; Quintanilla Martinez, Leticia ; Nordheim, Alfred ; Pichler, Bernd J.</creatorcontrib><description>The clinical use of Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) has proven to be a strong diagnostic tool in the field of neurology. The reliability of these methods to confirm clinical diagnoses has guided preclinical research to utilize these techniques for the characterization of animal disease models.
Previously, we demonstrated that an endothelial cell-specific ablation of the murine Serum Response Factor (SrfiECKO) results in blood brain barrier (BBB) breakdown and hemorrhagic stroke. Taking advantage of this mouse model we here perform a comprehensive longitudinal, multiparametric and in vivo imaging approach to reveal pathophysiological processes occurring before and during the appearance of cerebral microbleeds using combined PET and MRI. We complement our imaging results with data regarding animal behavior and immunohistochemistry.
Our results demonstrate diffusion abnormalities in the cortical brain tissue prior to the onset of cerebral microbleeds. Diffusion reductions were accompanied by significant increments of [18F]FAZA uptake before the onset of the lesions in T2WI. The Open Field behavioral tests revealed reduced activity of SrfiECKO animals, whereas histology confirmed the presence of hemorrhages in cortical regions of the mouse brain and iron deposition at lesion sites with increased hypoxia inducible factor 1α, CD31 and glial fibrillary acidic protein expression.
For the first time, we performed a thorough evaluation of the prodromal period before the occurrence of spontaneous cerebral microbleeds. Using in vivo PET and MRI, we show the pathological tissue changes that occur previous to gross blood brain barrier (BBB) disruption and breakage. In addition, our results show that apparent diffusion coefficient (ADC) reduction may be an early biomarker of BBB disruption proposing an alternate clinical interpretation. Furthermore, our findings remark the usefulness of this novel SrfiECKO mouse model to study underlying mechanisms of hemorrhagic stroke.
•PET-MRI characterization of an endogenous spontaneous stroke model•BBB breakage courses with reductions in water diffusion•Evolution of microangiopathies not associated to amyloid plaque deposition.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2017.04.071</identifier><identifier>PMID: 28473286</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Ablation ; Age ; Animal diseases ; Animal models ; Animals ; Aquaporins ; Bioindicators ; Blood-brain barrier ; Blood-Brain Barrier - diagnostic imaging ; Brain ; Cerebral Cortex - diagnostic imaging ; Cortex ; Dementia ; Diagnostic software ; Diffusion coefficient ; Disease Models, Animal ; Disruption ; Glial fibrillary acidic protein ; Glucose ; Hemorrhage ; Histology ; Hypoxia ; Immunohistochemistry ; Intracranial Hemorrhages - diagnostic imaging ; Iron ; Lesions ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Male ; Metabolism ; Mice ; Mice, Transgenic ; Neuroimaging ; Neurology ; NMR ; Nuclear magnetic resonance ; Permeability ; Pets ; Positron emission tomography ; Positron-Emission Tomography - methods ; Prodromal Symptoms ; Rodents ; Serum response factor ; Stem cells ; Stroke ; Stroke - diagnosis ; Tomography ; Transcription factors</subject><ispartof>NeuroImage (Orlando, Fla.), 2017-07, Vol.155, p.245-256</ispartof><rights>2017 Elsevier Inc.</rights><rights>Copyright © 2017 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Jul 15, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-2f5a603bce8e8128db8a178e9fbb72185144a20d9100f8cd3634e310e9197ac53</citedby><cites>FETCH-LOGICAL-c402t-2f5a603bce8e8128db8a178e9fbb72185144a20d9100f8cd3634e310e9197ac53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1919451141?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976,64364,64366,64368,72218</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28473286$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Castaneda Vega, Salvador</creatorcontrib><creatorcontrib>Weinl, Christine</creatorcontrib><creatorcontrib>Calaminus, Carsten</creatorcontrib><creatorcontrib>Wang, Lisa</creatorcontrib><creatorcontrib>Harant, Maren</creatorcontrib><creatorcontrib>Ehrlichmann, Walter</creatorcontrib><creatorcontrib>Thiele, Dennis</creatorcontrib><creatorcontrib>Kohlhofer, Ursula</creatorcontrib><creatorcontrib>Reischl, Gerald</creatorcontrib><creatorcontrib>Hempel, Johann-Martin</creatorcontrib><creatorcontrib>Ernemann, Ulrike</creatorcontrib><creatorcontrib>Quintanilla Martinez, Leticia</creatorcontrib><creatorcontrib>Nordheim, Alfred</creatorcontrib><creatorcontrib>Pichler, Bernd J.</creatorcontrib><title>Characterization of a novel murine model for spontaneous hemorrhagic stroke using in vivo PET and MR multiparametric imaging</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>The clinical use of Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) has proven to be a strong diagnostic tool in the field of neurology. The reliability of these methods to confirm clinical diagnoses has guided preclinical research to utilize these techniques for the characterization of animal disease models.
Previously, we demonstrated that an endothelial cell-specific ablation of the murine Serum Response Factor (SrfiECKO) results in blood brain barrier (BBB) breakdown and hemorrhagic stroke. Taking advantage of this mouse model we here perform a comprehensive longitudinal, multiparametric and in vivo imaging approach to reveal pathophysiological processes occurring before and during the appearance of cerebral microbleeds using combined PET and MRI. We complement our imaging results with data regarding animal behavior and immunohistochemistry.
Our results demonstrate diffusion abnormalities in the cortical brain tissue prior to the onset of cerebral microbleeds. Diffusion reductions were accompanied by significant increments of [18F]FAZA uptake before the onset of the lesions in T2WI. The Open Field behavioral tests revealed reduced activity of SrfiECKO animals, whereas histology confirmed the presence of hemorrhages in cortical regions of the mouse brain and iron deposition at lesion sites with increased hypoxia inducible factor 1α, CD31 and glial fibrillary acidic protein expression.
For the first time, we performed a thorough evaluation of the prodromal period before the occurrence of spontaneous cerebral microbleeds. Using in vivo PET and MRI, we show the pathological tissue changes that occur previous to gross blood brain barrier (BBB) disruption and breakage. In addition, our results show that apparent diffusion coefficient (ADC) reduction may be an early biomarker of BBB disruption proposing an alternate clinical interpretation. Furthermore, our findings remark the usefulness of this novel SrfiECKO mouse model to study underlying mechanisms of hemorrhagic stroke.
•PET-MRI characterization of an endogenous spontaneous stroke model•BBB breakage courses with reductions in water diffusion•Evolution of microangiopathies not associated to amyloid plaque deposition.</description><subject>Ablation</subject><subject>Age</subject><subject>Animal diseases</subject><subject>Animal models</subject><subject>Animals</subject><subject>Aquaporins</subject><subject>Bioindicators</subject><subject>Blood-brain barrier</subject><subject>Blood-Brain Barrier - diagnostic imaging</subject><subject>Brain</subject><subject>Cerebral Cortex - diagnostic imaging</subject><subject>Cortex</subject><subject>Dementia</subject><subject>Diagnostic software</subject><subject>Diffusion coefficient</subject><subject>Disease Models, Animal</subject><subject>Disruption</subject><subject>Glial fibrillary acidic protein</subject><subject>Glucose</subject><subject>Hemorrhage</subject><subject>Histology</subject><subject>Hypoxia</subject><subject>Immunohistochemistry</subject><subject>Intracranial Hemorrhages - diagnostic imaging</subject><subject>Iron</subject><subject>Lesions</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Neuroimaging</subject><subject>Neurology</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Permeability</subject><subject>Pets</subject><subject>Positron emission tomography</subject><subject>Positron-Emission Tomography - methods</subject><subject>Prodromal Symptoms</subject><subject>Rodents</subject><subject>Serum response factor</subject><subject>Stem cells</subject><subject>Stroke</subject><subject>Stroke - diagnosis</subject><subject>Tomography</subject><subject>Transcription factors</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkU9v1DAQxS0EoqXwFZAlLlwSZhInsY-wKn-kIhAqZ8txJrteEnuxk5WK-PB4tQUkLpw8ln7z3sw8xjhCiYDtq33paY3BzWZLZQXYlSBK6PABu0RQTaGarnp4qpu6kIjqgj1JaQ8ACoV8zC4qKbq6ku0l-7nZmWjsQtH9MIsLnoeRG-7DkSY-r9F54nMY8mcMkadD8IvxFNbEdzSHGHdm6yxPSwzfiK_J-S13nh_dMfDP17fc-IF__JKFpsUdstFMS8z8afCMPmWPRjMlenb_XrGvb69vN--Lm0_vPmxe3xRWQLUU1diYFurekiSJlRx6abCTpMa-7yqUDQphKhgUAozSDnVbC6oRSKHqjG3qK_byrHuI4ftKadGzS5am6byKRqlaECCFzOiLf9B9WKPP02nMcqJBFJgpeaZsDClFGvUh5p3inUbQp4T0Xv9NSJ8S0iB0Tii3Pr83WPuZhj-NvyPJwJszQPkiR0dRJ-vIWxpcJLvoIbj_u_wCM0CoTg</recordid><startdate>20170715</startdate><enddate>20170715</enddate><creator>Castaneda Vega, Salvador</creator><creator>Weinl, Christine</creator><creator>Calaminus, Carsten</creator><creator>Wang, Lisa</creator><creator>Harant, Maren</creator><creator>Ehrlichmann, Walter</creator><creator>Thiele, Dennis</creator><creator>Kohlhofer, Ursula</creator><creator>Reischl, Gerald</creator><creator>Hempel, Johann-Martin</creator><creator>Ernemann, Ulrike</creator><creator>Quintanilla Martinez, Leticia</creator><creator>Nordheim, Alfred</creator><creator>Pichler, Bernd J.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20170715</creationdate><title>Characterization of a novel murine model for spontaneous hemorrhagic stroke using in vivo PET and MR multiparametric imaging</title><author>Castaneda Vega, Salvador ; Weinl, Christine ; Calaminus, Carsten ; Wang, Lisa ; Harant, Maren ; Ehrlichmann, Walter ; Thiele, Dennis ; Kohlhofer, Ursula ; Reischl, Gerald ; Hempel, Johann-Martin ; Ernemann, Ulrike ; Quintanilla Martinez, Leticia ; Nordheim, Alfred ; Pichler, Bernd J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-2f5a603bce8e8128db8a178e9fbb72185144a20d9100f8cd3634e310e9197ac53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Ablation</topic><topic>Age</topic><topic>Animal diseases</topic><topic>Animal models</topic><topic>Animals</topic><topic>Aquaporins</topic><topic>Bioindicators</topic><topic>Blood-brain barrier</topic><topic>Blood-Brain Barrier - diagnostic imaging</topic><topic>Brain</topic><topic>Cerebral Cortex - diagnostic imaging</topic><topic>Cortex</topic><topic>Dementia</topic><topic>Diagnostic software</topic><topic>Diffusion coefficient</topic><topic>Disease Models, Animal</topic><topic>Disruption</topic><topic>Glial fibrillary acidic protein</topic><topic>Glucose</topic><topic>Hemorrhage</topic><topic>Histology</topic><topic>Hypoxia</topic><topic>Immunohistochemistry</topic><topic>Intracranial Hemorrhages - diagnostic imaging</topic><topic>Iron</topic><topic>Lesions</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Neuroimaging</topic><topic>Neurology</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Permeability</topic><topic>Pets</topic><topic>Positron emission tomography</topic><topic>Positron-Emission Tomography - methods</topic><topic>Prodromal Symptoms</topic><topic>Rodents</topic><topic>Serum response factor</topic><topic>Stem cells</topic><topic>Stroke</topic><topic>Stroke - diagnosis</topic><topic>Tomography</topic><topic>Transcription factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castaneda Vega, Salvador</creatorcontrib><creatorcontrib>Weinl, Christine</creatorcontrib><creatorcontrib>Calaminus, Carsten</creatorcontrib><creatorcontrib>Wang, Lisa</creatorcontrib><creatorcontrib>Harant, Maren</creatorcontrib><creatorcontrib>Ehrlichmann, Walter</creatorcontrib><creatorcontrib>Thiele, Dennis</creatorcontrib><creatorcontrib>Kohlhofer, Ursula</creatorcontrib><creatorcontrib>Reischl, Gerald</creatorcontrib><creatorcontrib>Hempel, Johann-Martin</creatorcontrib><creatorcontrib>Ernemann, Ulrike</creatorcontrib><creatorcontrib>Quintanilla Martinez, Leticia</creatorcontrib><creatorcontrib>Nordheim, Alfred</creatorcontrib><creatorcontrib>Pichler, Bernd J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castaneda Vega, Salvador</au><au>Weinl, Christine</au><au>Calaminus, Carsten</au><au>Wang, Lisa</au><au>Harant, Maren</au><au>Ehrlichmann, Walter</au><au>Thiele, Dennis</au><au>Kohlhofer, Ursula</au><au>Reischl, Gerald</au><au>Hempel, Johann-Martin</au><au>Ernemann, Ulrike</au><au>Quintanilla Martinez, Leticia</au><au>Nordheim, Alfred</au><au>Pichler, Bernd J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of a novel murine model for spontaneous hemorrhagic stroke using in vivo PET and MR multiparametric imaging</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2017-07-15</date><risdate>2017</risdate><volume>155</volume><spage>245</spage><epage>256</epage><pages>245-256</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>The clinical use of Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) has proven to be a strong diagnostic tool in the field of neurology. The reliability of these methods to confirm clinical diagnoses has guided preclinical research to utilize these techniques for the characterization of animal disease models.
Previously, we demonstrated that an endothelial cell-specific ablation of the murine Serum Response Factor (SrfiECKO) results in blood brain barrier (BBB) breakdown and hemorrhagic stroke. Taking advantage of this mouse model we here perform a comprehensive longitudinal, multiparametric and in vivo imaging approach to reveal pathophysiological processes occurring before and during the appearance of cerebral microbleeds using combined PET and MRI. We complement our imaging results with data regarding animal behavior and immunohistochemistry.
Our results demonstrate diffusion abnormalities in the cortical brain tissue prior to the onset of cerebral microbleeds. Diffusion reductions were accompanied by significant increments of [18F]FAZA uptake before the onset of the lesions in T2WI. The Open Field behavioral tests revealed reduced activity of SrfiECKO animals, whereas histology confirmed the presence of hemorrhages in cortical regions of the mouse brain and iron deposition at lesion sites with increased hypoxia inducible factor 1α, CD31 and glial fibrillary acidic protein expression.
For the first time, we performed a thorough evaluation of the prodromal period before the occurrence of spontaneous cerebral microbleeds. Using in vivo PET and MRI, we show the pathological tissue changes that occur previous to gross blood brain barrier (BBB) disruption and breakage. In addition, our results show that apparent diffusion coefficient (ADC) reduction may be an early biomarker of BBB disruption proposing an alternate clinical interpretation. Furthermore, our findings remark the usefulness of this novel SrfiECKO mouse model to study underlying mechanisms of hemorrhagic stroke.
•PET-MRI characterization of an endogenous spontaneous stroke model•BBB breakage courses with reductions in water diffusion•Evolution of microangiopathies not associated to amyloid plaque deposition.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>28473286</pmid><doi>10.1016/j.neuroimage.2017.04.071</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-8119 |
ispartof | NeuroImage (Orlando, Fla.), 2017-07, Vol.155, p.245-256 |
issn | 1053-8119 1095-9572 |
language | eng |
recordid | cdi_proquest_miscellaneous_1896040848 |
source | MEDLINE; Elsevier ScienceDirect Journals; ProQuest Central UK/Ireland |
subjects | Ablation Age Animal diseases Animal models Animals Aquaporins Bioindicators Blood-brain barrier Blood-Brain Barrier - diagnostic imaging Brain Cerebral Cortex - diagnostic imaging Cortex Dementia Diagnostic software Diffusion coefficient Disease Models, Animal Disruption Glial fibrillary acidic protein Glucose Hemorrhage Histology Hypoxia Immunohistochemistry Intracranial Hemorrhages - diagnostic imaging Iron Lesions Magnetic resonance imaging Magnetic Resonance Imaging - methods Male Metabolism Mice Mice, Transgenic Neuroimaging Neurology NMR Nuclear magnetic resonance Permeability Pets Positron emission tomography Positron-Emission Tomography - methods Prodromal Symptoms Rodents Serum response factor Stem cells Stroke Stroke - diagnosis Tomography Transcription factors |
title | Characterization of a novel murine model for spontaneous hemorrhagic stroke using in vivo PET and MR multiparametric imaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A44%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20a%20novel%20murine%20model%20for%20spontaneous%20hemorrhagic%20stroke%20using%20in%20vivo%20PET%20and%20MR%20multiparametric%20imaging&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Castaneda%20Vega,%20Salvador&rft.date=2017-07-15&rft.volume=155&rft.spage=245&rft.epage=256&rft.pages=245-256&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2017.04.071&rft_dat=%3Cproquest_cross%3E1919451141%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1919451141&rft_id=info:pmid/28473286&rft_els_id=S1053811917303907&rfr_iscdi=true |