Non‐gaussian diffusion evaluation of the human kidney by Padé exponent model

Purpose To evaluate the feasibility of renal diffusion quantification using the Padé exponent model (PEM) in healthy subjects. Materials and Methods Diffusion measurements were completed in 10 healthy subjects (mean age, 32.4 ± 8.9 years) on a 3T MRI scanner (Magnetom Trio, Siemens AG, Germany). A r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of magnetic resonance imaging 2018-01, Vol.47 (1), p.160-167
Hauptverfasser: Ljimani, Alexandra, Lanzman, Rotem S., Müller‐Lutz, Anja, Antoch, Gerald, Wittsack, Hans‐Jörg
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 167
container_issue 1
container_start_page 160
container_title Journal of magnetic resonance imaging
container_volume 47
creator Ljimani, Alexandra
Lanzman, Rotem S.
Müller‐Lutz, Anja
Antoch, Gerald
Wittsack, Hans‐Jörg
description Purpose To evaluate the feasibility of renal diffusion quantification using the Padé exponent model (PEM) in healthy subjects. Materials and Methods Diffusion measurements were completed in 10 healthy subjects (mean age, 32.4 ± 8.9 years) on a 3T MRI scanner (Magnetom Trio, Siemens AG, Germany). A respiratory‐triggered echo planar imaging sequence (15 slices with 6 mm thickness; 16 b‐values [0–750 s/mm2]; three diffusion directions; field of view: 400 × 375 mm; Matrix 192 × 192; repetition time/echo time: 3000/74 ms) was acquired in the coronal direction. Parameter maps were calculated for the monoexponential, biexponential, kurtosis models, and the PEM. A regression analysis using an R2‐test and corrected Akaike information criterion (AICc) was performed to identify the best mathematical fitting to the measured diffusion‐weighted imaging signal decay. Results The mathematical accuracy of the PEM was significantly higher than for the other three‐parameter and the monoexponential model (P 
doi_str_mv 10.1002/jmri.25742
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1895277452</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1975482045</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3932-33ec263b42c342622c6cd117c904063a6f5e97464e7c2b7e46d10d18d303c6173</originalsourceid><addsrcrecordid>eNp90E1O3EAQBeAWAvEXNhwgssQGIXnorv6zlxEKhGhgoihZt9rdZcYT2z1xj4HZ5Qi5Rs7BTThJPDFkkUVW9RafnkqPkGNGJ4xSOF80XTUBqQVskX0mAVKQmdoeMpU8ZRnVe-QgxgWlNM-F3CV7kAk9QLFPZrehff7x8872MVa2TXxVln2sQpvgva17u9rEUCarOSbzvhnEt8q3uE6KdfLJ-qdfCT4uQ4vtKmmCx_oN2SltHfHo5R6Sr5fvv1x8SKezq-uLd9PU8ZxDyjk6ULwQ4LgABeCU84xpl1NBFbeqlJhroQRqB4VGoTyjnmWeU-4U0_yQnI69yy587zGuTFNFh3VtWwx9NCzLJWgtJAz05B-6CH3XDt8ZlmspMqBCDupsVK4LMXZYmmVXNbZbG0bNZmazmdn8mXnAb18q-6JB_5e-7joANoKHqsb1f6rMx5vP12Ppb9MLh5c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1975482045</pqid></control><display><type>article</type><title>Non‐gaussian diffusion evaluation of the human kidney by Padé exponent model</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Free Content</source><creator>Ljimani, Alexandra ; Lanzman, Rotem S. ; Müller‐Lutz, Anja ; Antoch, Gerald ; Wittsack, Hans‐Jörg</creator><creatorcontrib>Ljimani, Alexandra ; Lanzman, Rotem S. ; Müller‐Lutz, Anja ; Antoch, Gerald ; Wittsack, Hans‐Jörg</creatorcontrib><description>Purpose To evaluate the feasibility of renal diffusion quantification using the Padé exponent model (PEM) in healthy subjects. Materials and Methods Diffusion measurements were completed in 10 healthy subjects (mean age, 32.4 ± 8.9 years) on a 3T MRI scanner (Magnetom Trio, Siemens AG, Germany). A respiratory‐triggered echo planar imaging sequence (15 slices with 6 mm thickness; 16 b‐values [0–750 s/mm2]; three diffusion directions; field of view: 400 × 375 mm; Matrix 192 × 192; repetition time/echo time: 3000/74 ms) was acquired in the coronal direction. Parameter maps were calculated for the monoexponential, biexponential, kurtosis models, and the PEM. A regression analysis using an R2‐test and corrected Akaike information criterion (AICc) was performed to identify the best mathematical fitting to the measured diffusion‐weighted imaging signal decay. Results The mathematical accuracy of the PEM was significantly higher than for the other three‐parameter and the monoexponential model (P &lt; 0.05), which enables more precise information about the deviation of the Gaussian behavior of the diffusion signal by the PEM. The biexponential model showed better fitting to the diffusion signal (medullar Rbi2 0.989 ± 0.008, AICcbi 113.3 ± 6.6; cortical Rbi2 0.992 ± 0.006, AICcbi 113.3 ± 5.2) than the three‐parameter models (medullar RPadé2 0.965 ± 0.016, AICcPadé 122.6 ± 6.4, RK2 0.954 ± 0.019, AICcK 128.5 ± 6.0; cortical RPadé2 0.989 ± 0.005, AICcPadé 116.3 ± 4.4, RK2 0.985 ± 0.007, AICcK 120.4 ± 4.8). The monoexponential model fits least to the diffusion signal in the kidney (medullar Rmono2 0.898 ± 0.039, AICcmono 141.4 ± 5.6; cortical Rmono2 0.961 ± 0.013, AICcmono 135.4 ± 4.8). Conclusion The PEM is a novel promising approach to quantify diffusion properties in the human kidney and might further improve functional renal MR imaging. Level of Evidence: 1 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018;47:160–167.</description><identifier>ISSN: 1053-1807</identifier><identifier>EISSN: 1522-2586</identifier><identifier>DOI: 10.1002/jmri.25742</identifier><identifier>PMID: 28471524</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Adult ; Algorithms ; Diffusion ; Diffusion Magnetic Resonance Imaging ; DWI ; Feasibility studies ; Female ; Field of view ; Functional magnetic resonance imaging ; Glomerular Filtration Rate ; Healthy Volunteers ; Humans ; Image Processing, Computer-Assisted ; Kidney - diagnostic imaging ; Kidneys ; Kurtosis ; Magnetic resonance imaging ; Male ; Mathematical models ; Matrix methods ; Measurement methods ; Models, Anatomic ; Models, Theoretical ; non‐Gaussian diffusion ; Normal Distribution ; Padé exponent model ; Regression analysis ; renal fMRI ; Young Adult</subject><ispartof>Journal of magnetic resonance imaging, 2018-01, Vol.47 (1), p.160-167</ispartof><rights>2017 International Society for Magnetic Resonance in Medicine</rights><rights>2017 International Society for Magnetic Resonance in Medicine.</rights><rights>2018 International Society for Magnetic Resonance in Medicine</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3932-33ec263b42c342622c6cd117c904063a6f5e97464e7c2b7e46d10d18d303c6173</citedby><cites>FETCH-LOGICAL-c3932-33ec263b42c342622c6cd117c904063a6f5e97464e7c2b7e46d10d18d303c6173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjmri.25742$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjmri.25742$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27903,27904,45553,45554,46388,46812</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28471524$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ljimani, Alexandra</creatorcontrib><creatorcontrib>Lanzman, Rotem S.</creatorcontrib><creatorcontrib>Müller‐Lutz, Anja</creatorcontrib><creatorcontrib>Antoch, Gerald</creatorcontrib><creatorcontrib>Wittsack, Hans‐Jörg</creatorcontrib><title>Non‐gaussian diffusion evaluation of the human kidney by Padé exponent model</title><title>Journal of magnetic resonance imaging</title><addtitle>J Magn Reson Imaging</addtitle><description>Purpose To evaluate the feasibility of renal diffusion quantification using the Padé exponent model (PEM) in healthy subjects. Materials and Methods Diffusion measurements were completed in 10 healthy subjects (mean age, 32.4 ± 8.9 years) on a 3T MRI scanner (Magnetom Trio, Siemens AG, Germany). A respiratory‐triggered echo planar imaging sequence (15 slices with 6 mm thickness; 16 b‐values [0–750 s/mm2]; three diffusion directions; field of view: 400 × 375 mm; Matrix 192 × 192; repetition time/echo time: 3000/74 ms) was acquired in the coronal direction. Parameter maps were calculated for the monoexponential, biexponential, kurtosis models, and the PEM. A regression analysis using an R2‐test and corrected Akaike information criterion (AICc) was performed to identify the best mathematical fitting to the measured diffusion‐weighted imaging signal decay. Results The mathematical accuracy of the PEM was significantly higher than for the other three‐parameter and the monoexponential model (P &lt; 0.05), which enables more precise information about the deviation of the Gaussian behavior of the diffusion signal by the PEM. The biexponential model showed better fitting to the diffusion signal (medullar Rbi2 0.989 ± 0.008, AICcbi 113.3 ± 6.6; cortical Rbi2 0.992 ± 0.006, AICcbi 113.3 ± 5.2) than the three‐parameter models (medullar RPadé2 0.965 ± 0.016, AICcPadé 122.6 ± 6.4, RK2 0.954 ± 0.019, AICcK 128.5 ± 6.0; cortical RPadé2 0.989 ± 0.005, AICcPadé 116.3 ± 4.4, RK2 0.985 ± 0.007, AICcK 120.4 ± 4.8). The monoexponential model fits least to the diffusion signal in the kidney (medullar Rmono2 0.898 ± 0.039, AICcmono 141.4 ± 5.6; cortical Rmono2 0.961 ± 0.013, AICcmono 135.4 ± 4.8). Conclusion The PEM is a novel promising approach to quantify diffusion properties in the human kidney and might further improve functional renal MR imaging. Level of Evidence: 1 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018;47:160–167.</description><subject>Adult</subject><subject>Algorithms</subject><subject>Diffusion</subject><subject>Diffusion Magnetic Resonance Imaging</subject><subject>DWI</subject><subject>Feasibility studies</subject><subject>Female</subject><subject>Field of view</subject><subject>Functional magnetic resonance imaging</subject><subject>Glomerular Filtration Rate</subject><subject>Healthy Volunteers</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Kidney - diagnostic imaging</subject><subject>Kidneys</subject><subject>Kurtosis</subject><subject>Magnetic resonance imaging</subject><subject>Male</subject><subject>Mathematical models</subject><subject>Matrix methods</subject><subject>Measurement methods</subject><subject>Models, Anatomic</subject><subject>Models, Theoretical</subject><subject>non‐Gaussian diffusion</subject><subject>Normal Distribution</subject><subject>Padé exponent model</subject><subject>Regression analysis</subject><subject>renal fMRI</subject><subject>Young Adult</subject><issn>1053-1807</issn><issn>1522-2586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90E1O3EAQBeAWAvEXNhwgssQGIXnorv6zlxEKhGhgoihZt9rdZcYT2z1xj4HZ5Qi5Rs7BTThJPDFkkUVW9RafnkqPkGNGJ4xSOF80XTUBqQVskX0mAVKQmdoeMpU8ZRnVe-QgxgWlNM-F3CV7kAk9QLFPZrehff7x8872MVa2TXxVln2sQpvgva17u9rEUCarOSbzvhnEt8q3uE6KdfLJ-qdfCT4uQ4vtKmmCx_oN2SltHfHo5R6Sr5fvv1x8SKezq-uLd9PU8ZxDyjk6ULwQ4LgABeCU84xpl1NBFbeqlJhroQRqB4VGoTyjnmWeU-4U0_yQnI69yy587zGuTFNFh3VtWwx9NCzLJWgtJAz05B-6CH3XDt8ZlmspMqBCDupsVK4LMXZYmmVXNbZbG0bNZmazmdn8mXnAb18q-6JB_5e-7joANoKHqsb1f6rMx5vP12Ppb9MLh5c</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Ljimani, Alexandra</creator><creator>Lanzman, Rotem S.</creator><creator>Müller‐Lutz, Anja</creator><creator>Antoch, Gerald</creator><creator>Wittsack, Hans‐Jörg</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201801</creationdate><title>Non‐gaussian diffusion evaluation of the human kidney by Padé exponent model</title><author>Ljimani, Alexandra ; Lanzman, Rotem S. ; Müller‐Lutz, Anja ; Antoch, Gerald ; Wittsack, Hans‐Jörg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3932-33ec263b42c342622c6cd117c904063a6f5e97464e7c2b7e46d10d18d303c6173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adult</topic><topic>Algorithms</topic><topic>Diffusion</topic><topic>Diffusion Magnetic Resonance Imaging</topic><topic>DWI</topic><topic>Feasibility studies</topic><topic>Female</topic><topic>Field of view</topic><topic>Functional magnetic resonance imaging</topic><topic>Glomerular Filtration Rate</topic><topic>Healthy Volunteers</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Kidney - diagnostic imaging</topic><topic>Kidneys</topic><topic>Kurtosis</topic><topic>Magnetic resonance imaging</topic><topic>Male</topic><topic>Mathematical models</topic><topic>Matrix methods</topic><topic>Measurement methods</topic><topic>Models, Anatomic</topic><topic>Models, Theoretical</topic><topic>non‐Gaussian diffusion</topic><topic>Normal Distribution</topic><topic>Padé exponent model</topic><topic>Regression analysis</topic><topic>renal fMRI</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ljimani, Alexandra</creatorcontrib><creatorcontrib>Lanzman, Rotem S.</creatorcontrib><creatorcontrib>Müller‐Lutz, Anja</creatorcontrib><creatorcontrib>Antoch, Gerald</creatorcontrib><creatorcontrib>Wittsack, Hans‐Jörg</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of magnetic resonance imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ljimani, Alexandra</au><au>Lanzman, Rotem S.</au><au>Müller‐Lutz, Anja</au><au>Antoch, Gerald</au><au>Wittsack, Hans‐Jörg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non‐gaussian diffusion evaluation of the human kidney by Padé exponent model</atitle><jtitle>Journal of magnetic resonance imaging</jtitle><addtitle>J Magn Reson Imaging</addtitle><date>2018-01</date><risdate>2018</risdate><volume>47</volume><issue>1</issue><spage>160</spage><epage>167</epage><pages>160-167</pages><issn>1053-1807</issn><eissn>1522-2586</eissn><abstract>Purpose To evaluate the feasibility of renal diffusion quantification using the Padé exponent model (PEM) in healthy subjects. Materials and Methods Diffusion measurements were completed in 10 healthy subjects (mean age, 32.4 ± 8.9 years) on a 3T MRI scanner (Magnetom Trio, Siemens AG, Germany). A respiratory‐triggered echo planar imaging sequence (15 slices with 6 mm thickness; 16 b‐values [0–750 s/mm2]; three diffusion directions; field of view: 400 × 375 mm; Matrix 192 × 192; repetition time/echo time: 3000/74 ms) was acquired in the coronal direction. Parameter maps were calculated for the monoexponential, biexponential, kurtosis models, and the PEM. A regression analysis using an R2‐test and corrected Akaike information criterion (AICc) was performed to identify the best mathematical fitting to the measured diffusion‐weighted imaging signal decay. Results The mathematical accuracy of the PEM was significantly higher than for the other three‐parameter and the monoexponential model (P &lt; 0.05), which enables more precise information about the deviation of the Gaussian behavior of the diffusion signal by the PEM. The biexponential model showed better fitting to the diffusion signal (medullar Rbi2 0.989 ± 0.008, AICcbi 113.3 ± 6.6; cortical Rbi2 0.992 ± 0.006, AICcbi 113.3 ± 5.2) than the three‐parameter models (medullar RPadé2 0.965 ± 0.016, AICcPadé 122.6 ± 6.4, RK2 0.954 ± 0.019, AICcK 128.5 ± 6.0; cortical RPadé2 0.989 ± 0.005, AICcPadé 116.3 ± 4.4, RK2 0.985 ± 0.007, AICcK 120.4 ± 4.8). The monoexponential model fits least to the diffusion signal in the kidney (medullar Rmono2 0.898 ± 0.039, AICcmono 141.4 ± 5.6; cortical Rmono2 0.961 ± 0.013, AICcmono 135.4 ± 4.8). Conclusion The PEM is a novel promising approach to quantify diffusion properties in the human kidney and might further improve functional renal MR imaging. Level of Evidence: 1 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018;47:160–167.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28471524</pmid><doi>10.1002/jmri.25742</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1053-1807
ispartof Journal of magnetic resonance imaging, 2018-01, Vol.47 (1), p.160-167
issn 1053-1807
1522-2586
language eng
recordid cdi_proquest_miscellaneous_1895277452
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Free Content
subjects Adult
Algorithms
Diffusion
Diffusion Magnetic Resonance Imaging
DWI
Feasibility studies
Female
Field of view
Functional magnetic resonance imaging
Glomerular Filtration Rate
Healthy Volunteers
Humans
Image Processing, Computer-Assisted
Kidney - diagnostic imaging
Kidneys
Kurtosis
Magnetic resonance imaging
Male
Mathematical models
Matrix methods
Measurement methods
Models, Anatomic
Models, Theoretical
non‐Gaussian diffusion
Normal Distribution
Padé exponent model
Regression analysis
renal fMRI
Young Adult
title Non‐gaussian diffusion evaluation of the human kidney by Padé exponent model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T17%3A53%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non%E2%80%90gaussian%20diffusion%20evaluation%20of%20the%20human%20kidney%20by%20Pad%C3%A9%20exponent%20model&rft.jtitle=Journal%20of%20magnetic%20resonance%20imaging&rft.au=Ljimani,%20Alexandra&rft.date=2018-01&rft.volume=47&rft.issue=1&rft.spage=160&rft.epage=167&rft.pages=160-167&rft.issn=1053-1807&rft.eissn=1522-2586&rft_id=info:doi/10.1002/jmri.25742&rft_dat=%3Cproquest_cross%3E1975482045%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1975482045&rft_id=info:pmid/28471524&rfr_iscdi=true