Hybrid Cellular Metabolism Coordinated by Zic3 and Esrrb Synergistically Enhances Induction of Naive Pluripotency

Naive pluripotent stem cells (PSCs) utilize both glycolysis and oxidative phosphorylation (OXPHOS) to satisfy their metabolic demands. However, it is unclear how somatic cells acquire this hybrid energy metabolism during reprogramming toward naive pluripotency. Here, we show that when transduced wit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell metabolism 2017-05, Vol.25 (5), p.1103-1117.e6
Hauptverfasser: Sone, Masamitsu, Morone, Nobuhiro, Nakamura, Tomonori, Tanaka, Akito, Okita, Keisuke, Woltjen, Knut, Nakagawa, Masato, Heuser, John E., Yamada, Yasuhiro, Yamanaka, Shinya, Yamamoto, Takuya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1117.e6
container_issue 5
container_start_page 1103
container_title Cell metabolism
container_volume 25
creator Sone, Masamitsu
Morone, Nobuhiro
Nakamura, Tomonori
Tanaka, Akito
Okita, Keisuke
Woltjen, Knut
Nakagawa, Masato
Heuser, John E.
Yamada, Yasuhiro
Yamanaka, Shinya
Yamamoto, Takuya
description Naive pluripotent stem cells (PSCs) utilize both glycolysis and oxidative phosphorylation (OXPHOS) to satisfy their metabolic demands. However, it is unclear how somatic cells acquire this hybrid energy metabolism during reprogramming toward naive pluripotency. Here, we show that when transduced with Oct4, Sox2, and Klf4 (OSK) into murine fibroblasts, Zic3 and Esrrb synergistically enhance the reprogramming efficiency by regulating cellular metabolic pathways. These two transcription factors (TFs) cooperatively activate glycolytic metabolism independently of hypoxia inducible factors (HIFs). In contrast, the regulatory modes of the TFs on OXPHOS are antagonistic: Zic3 represses OXPHOS, whereas Esrrb activates it. Therefore, when introduced with Zic3, Esrrb restores OXPHOS activity, which is essential for efficient reprogramming. In addition, Esrrb-mediated OXPHOS activation is critical for the conversion of primed PSCs into the naive state. Our study suggests that the combinatorial function of TFs achieves an appropriate balance of metabolic pathways to induce naive PSCs. [Display omitted] •Zic3 and Esrrb synergistically enhance somatic cell reprogramming•Zic3 and Esrrb cooperatively bind and activate glycolysis genes•Esrrb activates OXPHOS, but Zic3 represses it•OXPHOS activation enhances reprogramming of EpiSCs Sone et al. show that the transcription factors Zic3 and Esrrb synergistically enhance the reprogramming efficiency of murine fibroblasts transduced with the classic Oct4, Sox2, and Klf4 cocktail to induce naive pluripotency by regulating cellular metabolic pathways. Zic3 and Esrrb achieve a delicate orchestrated balance of glycolysis and oxidative phosphorylation in PSCs.
doi_str_mv 10.1016/j.cmet.2017.04.017
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1895276955</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S155041311730222X</els_id><sourcerecordid>1895276955</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-f0ae3095da311c54933710b08ee84f8d67d8f096155be08f64248a37561532873</originalsourceid><addsrcrecordid>eNp9kEtv1DAUhS0EoqXwB1ggL9kk-BXHkdig0ZRWKg8J2LCxHPsGPErsqe1Uyr_HoyksWZ2rq3OOdD6EXlPSUkLlu0NrFygtI7RviWirPEGXdOCs6QUjT-vddaQRlNML9CLnAyFc8oE_RxdMCdkPTF2i-5ttTN7hHczzOpuEP0ExY5x9XvAuxuR8MAUcHjf801uOTXB4n1Ma8bctQPrlc_HWzPOG9-G3CRYyvg1utcXHgOOEPxv_APjrvCZ_jAWC3V6iZ5OZM7x61Cv043r_fXfT3H35eLv7cNdYIWVpJmKAk6FzhlNqOzFw3lMyEgWgxKSc7J2ayCDrxhGImqRgQhned_XDmer5FXp77j2meL9CLnrx2daZJkBcs6Zq6Fgvh66rVna22hRzTjDpY_KLSZumRJ9Q64M-odYn1JoIXaWG3jz2r-MC7l_kL9tqeH82QF354CHpbH0lAM4nsEW76P_X_wccOo-5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1895276955</pqid></control><display><type>article</type><title>Hybrid Cellular Metabolism Coordinated by Zic3 and Esrrb Synergistically Enhances Induction of Naive Pluripotency</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Cell Press Free Archives</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Sone, Masamitsu ; Morone, Nobuhiro ; Nakamura, Tomonori ; Tanaka, Akito ; Okita, Keisuke ; Woltjen, Knut ; Nakagawa, Masato ; Heuser, John E. ; Yamada, Yasuhiro ; Yamanaka, Shinya ; Yamamoto, Takuya</creator><creatorcontrib>Sone, Masamitsu ; Morone, Nobuhiro ; Nakamura, Tomonori ; Tanaka, Akito ; Okita, Keisuke ; Woltjen, Knut ; Nakagawa, Masato ; Heuser, John E. ; Yamada, Yasuhiro ; Yamanaka, Shinya ; Yamamoto, Takuya</creatorcontrib><description>Naive pluripotent stem cells (PSCs) utilize both glycolysis and oxidative phosphorylation (OXPHOS) to satisfy their metabolic demands. However, it is unclear how somatic cells acquire this hybrid energy metabolism during reprogramming toward naive pluripotency. Here, we show that when transduced with Oct4, Sox2, and Klf4 (OSK) into murine fibroblasts, Zic3 and Esrrb synergistically enhance the reprogramming efficiency by regulating cellular metabolic pathways. These two transcription factors (TFs) cooperatively activate glycolytic metabolism independently of hypoxia inducible factors (HIFs). In contrast, the regulatory modes of the TFs on OXPHOS are antagonistic: Zic3 represses OXPHOS, whereas Esrrb activates it. Therefore, when introduced with Zic3, Esrrb restores OXPHOS activity, which is essential for efficient reprogramming. In addition, Esrrb-mediated OXPHOS activation is critical for the conversion of primed PSCs into the naive state. Our study suggests that the combinatorial function of TFs achieves an appropriate balance of metabolic pathways to induce naive PSCs. [Display omitted] •Zic3 and Esrrb synergistically enhance somatic cell reprogramming•Zic3 and Esrrb cooperatively bind and activate glycolysis genes•Esrrb activates OXPHOS, but Zic3 represses it•OXPHOS activation enhances reprogramming of EpiSCs Sone et al. show that the transcription factors Zic3 and Esrrb synergistically enhance the reprogramming efficiency of murine fibroblasts transduced with the classic Oct4, Sox2, and Klf4 cocktail to induce naive pluripotency by regulating cellular metabolic pathways. Zic3 and Esrrb achieve a delicate orchestrated balance of glycolysis and oxidative phosphorylation in PSCs.</description><identifier>ISSN: 1550-4131</identifier><identifier>EISSN: 1932-7420</identifier><identifier>DOI: 10.1016/j.cmet.2017.04.017</identifier><identifier>PMID: 28467928</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Cell Line ; Cells, Cultured ; Cellular Reprogramming ; epistem cell ; Esrrb ; Fibroblasts - cytology ; Fibroblasts - metabolism ; Glycolysis ; Homeodomain Proteins - genetics ; Homeodomain Proteins - metabolism ; Humans ; hypoxia inducible factor ; Induced Pluripotent Stem Cells - cytology ; Induced Pluripotent Stem Cells - metabolism ; Mice, Inbred C57BL ; Mice, Inbred ICR ; Mitochondria ; Oxidative Phosphorylation ; Pgc1a ; Receptors, Estrogen - genetics ; Receptors, Estrogen - metabolism ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Up-Regulation ; Zic3</subject><ispartof>Cell metabolism, 2017-05, Vol.25 (5), p.1103-1117.e6</ispartof><rights>2017 Elsevier Inc.</rights><rights>Copyright © 2017 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-f0ae3095da311c54933710b08ee84f8d67d8f096155be08f64248a37561532873</citedby><cites>FETCH-LOGICAL-c466t-f0ae3095da311c54933710b08ee84f8d67d8f096155be08f64248a37561532873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S155041311730222X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28467928$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sone, Masamitsu</creatorcontrib><creatorcontrib>Morone, Nobuhiro</creatorcontrib><creatorcontrib>Nakamura, Tomonori</creatorcontrib><creatorcontrib>Tanaka, Akito</creatorcontrib><creatorcontrib>Okita, Keisuke</creatorcontrib><creatorcontrib>Woltjen, Knut</creatorcontrib><creatorcontrib>Nakagawa, Masato</creatorcontrib><creatorcontrib>Heuser, John E.</creatorcontrib><creatorcontrib>Yamada, Yasuhiro</creatorcontrib><creatorcontrib>Yamanaka, Shinya</creatorcontrib><creatorcontrib>Yamamoto, Takuya</creatorcontrib><title>Hybrid Cellular Metabolism Coordinated by Zic3 and Esrrb Synergistically Enhances Induction of Naive Pluripotency</title><title>Cell metabolism</title><addtitle>Cell Metab</addtitle><description>Naive pluripotent stem cells (PSCs) utilize both glycolysis and oxidative phosphorylation (OXPHOS) to satisfy their metabolic demands. However, it is unclear how somatic cells acquire this hybrid energy metabolism during reprogramming toward naive pluripotency. Here, we show that when transduced with Oct4, Sox2, and Klf4 (OSK) into murine fibroblasts, Zic3 and Esrrb synergistically enhance the reprogramming efficiency by regulating cellular metabolic pathways. These two transcription factors (TFs) cooperatively activate glycolytic metabolism independently of hypoxia inducible factors (HIFs). In contrast, the regulatory modes of the TFs on OXPHOS are antagonistic: Zic3 represses OXPHOS, whereas Esrrb activates it. Therefore, when introduced with Zic3, Esrrb restores OXPHOS activity, which is essential for efficient reprogramming. In addition, Esrrb-mediated OXPHOS activation is critical for the conversion of primed PSCs into the naive state. Our study suggests that the combinatorial function of TFs achieves an appropriate balance of metabolic pathways to induce naive PSCs. [Display omitted] •Zic3 and Esrrb synergistically enhance somatic cell reprogramming•Zic3 and Esrrb cooperatively bind and activate glycolysis genes•Esrrb activates OXPHOS, but Zic3 represses it•OXPHOS activation enhances reprogramming of EpiSCs Sone et al. show that the transcription factors Zic3 and Esrrb synergistically enhance the reprogramming efficiency of murine fibroblasts transduced with the classic Oct4, Sox2, and Klf4 cocktail to induce naive pluripotency by regulating cellular metabolic pathways. Zic3 and Esrrb achieve a delicate orchestrated balance of glycolysis and oxidative phosphorylation in PSCs.</description><subject>Animals</subject><subject>Cell Line</subject><subject>Cells, Cultured</subject><subject>Cellular Reprogramming</subject><subject>epistem cell</subject><subject>Esrrb</subject><subject>Fibroblasts - cytology</subject><subject>Fibroblasts - metabolism</subject><subject>Glycolysis</subject><subject>Homeodomain Proteins - genetics</subject><subject>Homeodomain Proteins - metabolism</subject><subject>Humans</subject><subject>hypoxia inducible factor</subject><subject>Induced Pluripotent Stem Cells - cytology</subject><subject>Induced Pluripotent Stem Cells - metabolism</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Inbred ICR</subject><subject>Mitochondria</subject><subject>Oxidative Phosphorylation</subject><subject>Pgc1a</subject><subject>Receptors, Estrogen - genetics</subject><subject>Receptors, Estrogen - metabolism</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Up-Regulation</subject><subject>Zic3</subject><issn>1550-4131</issn><issn>1932-7420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtv1DAUhS0EoqXwB1ggL9kk-BXHkdig0ZRWKg8J2LCxHPsGPErsqe1Uyr_HoyksWZ2rq3OOdD6EXlPSUkLlu0NrFygtI7RviWirPEGXdOCs6QUjT-vddaQRlNML9CLnAyFc8oE_RxdMCdkPTF2i-5ttTN7hHczzOpuEP0ExY5x9XvAuxuR8MAUcHjf801uOTXB4n1Ma8bctQPrlc_HWzPOG9-G3CRYyvg1utcXHgOOEPxv_APjrvCZ_jAWC3V6iZ5OZM7x61Cv043r_fXfT3H35eLv7cNdYIWVpJmKAk6FzhlNqOzFw3lMyEgWgxKSc7J2ayCDrxhGImqRgQhned_XDmer5FXp77j2meL9CLnrx2daZJkBcs6Zq6Fgvh66rVna22hRzTjDpY_KLSZumRJ9Q64M-odYn1JoIXaWG3jz2r-MC7l_kL9tqeH82QF354CHpbH0lAM4nsEW76P_X_wccOo-5</recordid><startdate>20170502</startdate><enddate>20170502</enddate><creator>Sone, Masamitsu</creator><creator>Morone, Nobuhiro</creator><creator>Nakamura, Tomonori</creator><creator>Tanaka, Akito</creator><creator>Okita, Keisuke</creator><creator>Woltjen, Knut</creator><creator>Nakagawa, Masato</creator><creator>Heuser, John E.</creator><creator>Yamada, Yasuhiro</creator><creator>Yamanaka, Shinya</creator><creator>Yamamoto, Takuya</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20170502</creationdate><title>Hybrid Cellular Metabolism Coordinated by Zic3 and Esrrb Synergistically Enhances Induction of Naive Pluripotency</title><author>Sone, Masamitsu ; Morone, Nobuhiro ; Nakamura, Tomonori ; Tanaka, Akito ; Okita, Keisuke ; Woltjen, Knut ; Nakagawa, Masato ; Heuser, John E. ; Yamada, Yasuhiro ; Yamanaka, Shinya ; Yamamoto, Takuya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-f0ae3095da311c54933710b08ee84f8d67d8f096155be08f64248a37561532873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Cell Line</topic><topic>Cells, Cultured</topic><topic>Cellular Reprogramming</topic><topic>epistem cell</topic><topic>Esrrb</topic><topic>Fibroblasts - cytology</topic><topic>Fibroblasts - metabolism</topic><topic>Glycolysis</topic><topic>Homeodomain Proteins - genetics</topic><topic>Homeodomain Proteins - metabolism</topic><topic>Humans</topic><topic>hypoxia inducible factor</topic><topic>Induced Pluripotent Stem Cells - cytology</topic><topic>Induced Pluripotent Stem Cells - metabolism</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Inbred ICR</topic><topic>Mitochondria</topic><topic>Oxidative Phosphorylation</topic><topic>Pgc1a</topic><topic>Receptors, Estrogen - genetics</topic><topic>Receptors, Estrogen - metabolism</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Up-Regulation</topic><topic>Zic3</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sone, Masamitsu</creatorcontrib><creatorcontrib>Morone, Nobuhiro</creatorcontrib><creatorcontrib>Nakamura, Tomonori</creatorcontrib><creatorcontrib>Tanaka, Akito</creatorcontrib><creatorcontrib>Okita, Keisuke</creatorcontrib><creatorcontrib>Woltjen, Knut</creatorcontrib><creatorcontrib>Nakagawa, Masato</creatorcontrib><creatorcontrib>Heuser, John E.</creatorcontrib><creatorcontrib>Yamada, Yasuhiro</creatorcontrib><creatorcontrib>Yamanaka, Shinya</creatorcontrib><creatorcontrib>Yamamoto, Takuya</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Cell metabolism</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sone, Masamitsu</au><au>Morone, Nobuhiro</au><au>Nakamura, Tomonori</au><au>Tanaka, Akito</au><au>Okita, Keisuke</au><au>Woltjen, Knut</au><au>Nakagawa, Masato</au><au>Heuser, John E.</au><au>Yamada, Yasuhiro</au><au>Yamanaka, Shinya</au><au>Yamamoto, Takuya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid Cellular Metabolism Coordinated by Zic3 and Esrrb Synergistically Enhances Induction of Naive Pluripotency</atitle><jtitle>Cell metabolism</jtitle><addtitle>Cell Metab</addtitle><date>2017-05-02</date><risdate>2017</risdate><volume>25</volume><issue>5</issue><spage>1103</spage><epage>1117.e6</epage><pages>1103-1117.e6</pages><issn>1550-4131</issn><eissn>1932-7420</eissn><abstract>Naive pluripotent stem cells (PSCs) utilize both glycolysis and oxidative phosphorylation (OXPHOS) to satisfy their metabolic demands. However, it is unclear how somatic cells acquire this hybrid energy metabolism during reprogramming toward naive pluripotency. Here, we show that when transduced with Oct4, Sox2, and Klf4 (OSK) into murine fibroblasts, Zic3 and Esrrb synergistically enhance the reprogramming efficiency by regulating cellular metabolic pathways. These two transcription factors (TFs) cooperatively activate glycolytic metabolism independently of hypoxia inducible factors (HIFs). In contrast, the regulatory modes of the TFs on OXPHOS are antagonistic: Zic3 represses OXPHOS, whereas Esrrb activates it. Therefore, when introduced with Zic3, Esrrb restores OXPHOS activity, which is essential for efficient reprogramming. In addition, Esrrb-mediated OXPHOS activation is critical for the conversion of primed PSCs into the naive state. Our study suggests that the combinatorial function of TFs achieves an appropriate balance of metabolic pathways to induce naive PSCs. [Display omitted] •Zic3 and Esrrb synergistically enhance somatic cell reprogramming•Zic3 and Esrrb cooperatively bind and activate glycolysis genes•Esrrb activates OXPHOS, but Zic3 represses it•OXPHOS activation enhances reprogramming of EpiSCs Sone et al. show that the transcription factors Zic3 and Esrrb synergistically enhance the reprogramming efficiency of murine fibroblasts transduced with the classic Oct4, Sox2, and Klf4 cocktail to induce naive pluripotency by regulating cellular metabolic pathways. Zic3 and Esrrb achieve a delicate orchestrated balance of glycolysis and oxidative phosphorylation in PSCs.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>28467928</pmid><doi>10.1016/j.cmet.2017.04.017</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1550-4131
ispartof Cell metabolism, 2017-05, Vol.25 (5), p.1103-1117.e6
issn 1550-4131
1932-7420
language eng
recordid cdi_proquest_miscellaneous_1895276955
source MEDLINE; Elsevier ScienceDirect Journals Complete; Cell Press Free Archives; EZB-FREE-00999 freely available EZB journals
subjects Animals
Cell Line
Cells, Cultured
Cellular Reprogramming
epistem cell
Esrrb
Fibroblasts - cytology
Fibroblasts - metabolism
Glycolysis
Homeodomain Proteins - genetics
Homeodomain Proteins - metabolism
Humans
hypoxia inducible factor
Induced Pluripotent Stem Cells - cytology
Induced Pluripotent Stem Cells - metabolism
Mice, Inbred C57BL
Mice, Inbred ICR
Mitochondria
Oxidative Phosphorylation
Pgc1a
Receptors, Estrogen - genetics
Receptors, Estrogen - metabolism
Transcription Factors - genetics
Transcription Factors - metabolism
Up-Regulation
Zic3
title Hybrid Cellular Metabolism Coordinated by Zic3 and Esrrb Synergistically Enhances Induction of Naive Pluripotency
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A00%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20Cellular%20Metabolism%20Coordinated%20by%20Zic3%20and%20Esrrb%20Synergistically%20Enhances%20Induction%20of%20Naive%20Pluripotency&rft.jtitle=Cell%20metabolism&rft.au=Sone,%20Masamitsu&rft.date=2017-05-02&rft.volume=25&rft.issue=5&rft.spage=1103&rft.epage=1117.e6&rft.pages=1103-1117.e6&rft.issn=1550-4131&rft.eissn=1932-7420&rft_id=info:doi/10.1016/j.cmet.2017.04.017&rft_dat=%3Cproquest_cross%3E1895276955%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1895276955&rft_id=info:pmid/28467928&rft_els_id=S155041311730222X&rfr_iscdi=true