Fabrication of Hybrid Collagen Aerogels Reinforced with Wheat Grass Bioactives as Instructive Scaffolds for Collagen Turnover and Angiogenesis for Wound Healing Applications

The present study illustrates the progress of the wheat grass bioactive-reinforced collagen-based aerogel system as an instructive scaffold for collagen turnover and angiogenesis for wound healing applications. The reinforcement of wheat grass bioactives in collagen resulted in the design and develo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2017-05, Vol.9 (20), p.16939-16950
Hauptverfasser: Govindarajan, Dharunya, Duraipandy, Natarajan, Srivatsan, Kunnavakkam Vinjimur, Lakra, Rachita, Korapatti, Purna Sai, Jayavel, Ramasamy, Kiran, Manikantan Syamala
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The present study illustrates the progress of the wheat grass bioactive-reinforced collagen-based aerogel system as an instructive scaffold for collagen turnover and angiogenesis for wound healing applications. The reinforcement of wheat grass bioactives in collagen resulted in the design and development of aerogels with enhanced physicochemical and biomechanical properties due to the intermolecular interaction between the active growth factors of wheat grass and collagen fibril. Differential scanning calorimetry analysis revealed an enhanced denaturation temperature when compared to those of native collagen aerogels. Fourier transform infrared spectroscopy analysis confirmed that the reinforcement of bioactives in the wheat grass did not affect the structural integrity of the collagen molecule. Additionally, the reinforced biomaterial with a systematic absorptive morphology resulted in a three-dimensional (3D) sponge-like aerogel exhibiting a potent highly oriented 3D structural assembly that showed increased water retention ability and substance permeability that would enable the passage of nutrients and gaseous components for cellular growth. Furthermore, the cumulative effect of the growth factors in wheat grass and the collagen molecule augments the angiogenic ability and collagen production of the aerogel by restoration of the damaged tissue thereby making it a potential 3D wound dressing scaffold. The results were confirmed by in vivo wound healing assays. This study shows the possibility for progress of a biocompatible, biodegradable, and nonadhesive nutraceutical-reinforced collagen aerogel as an instructive scaffold with good antimicrobial properties for collagen turnover and angiogenic response for wound healing applications.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.7b05842