Bounded inhomogeneous wave profiles for increased surface wave excitation efficiency at fluid–solid interfaces

Though the ultrasonic excitation of surface waves in solids is generally realized through the use of a contact transducer, remote excitation would enable standoff testing in applications such as the nondestructive evaluation of structures. With respect to the optimal incident wave profile, bounded i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of the Acoustical Society of America 2017-04, Vol.141 (4), p.2779-2787
Hauptverfasser: Woods, Daniel C., Bolton, J. Stuart, Rhoads, Jeffrey F.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2787
container_issue 4
container_start_page 2779
container_title The Journal of the Acoustical Society of America
container_volume 141
creator Woods, Daniel C.
Bolton, J. Stuart
Rhoads, Jeffrey F.
description Though the ultrasonic excitation of surface waves in solids is generally realized through the use of a contact transducer, remote excitation would enable standoff testing in applications such as the nondestructive evaluation of structures. With respect to the optimal incident wave profile, bounded inhomogeneous waves, which include an exponentially decaying term, have been shown to improve the surface wave excitation efficiency as compared to Gaussian and square waves. The purpose of this work is to investigate the effect of varying the incident wave spatial decay rate, as applied to both lossless fluid–solid interfaces and to solids with viscoelastic losses included. The Fourier method is used to decompose the incident profile and subsequently compute the reflected wave profile. It is shown that inhomogeneous plane wave theory predicts, to a close approximation, the location of the minimum in the local reflection coefficient with respect to the decay rate for bounded incident waves. Moreover, plane wave theory gives a reasonable indication of the decay rate that maximizes the surface wave excitation efficiency.
doi_str_mv 10.1121/1.4979595
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1894915079</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1894915079</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-5cb28288f10828905a91c24c1b79dda837a12bec5d7beb8f605149caad35fdf3</originalsourceid><addsrcrecordid>eNp90MtOxSAQBmBiNHq8LHwB06WaVIGWFpZ64i0xceO-oTAopi0VWvXsfAff0CcR7VFXupoQvvmT-RHaJfiIEEqOyVEuSsEEW0EzwihOOaP5KpphjEmai6LYQJshPMQn45lYRxuU50VeUDpD_akbOw06sd29a90ddODGkDzLJ0h674xtICTG-fivPMgQZRi9kQomAy_KDnKwrkvAGKssdGqRyCExzWj1--tbcI39TB_gaytsozUjmwA7y7mFbs_PbueX6fXNxdX85DpVGWNDylRNOeXcEByHwEwKomiuSF0KrSXPSkloDYrpsoaamwIzkgslpc6Y0SbbQvtTbDzicYQwVK0NCppGfh1YES5yQRguRaQHE1XeheDBVL23rfSLiuDqs9-KVMt-o91bxo51C_pHfhcaweEEwncv_6b9iZ-c_4VVHy_6AMT6lOY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1894915079</pqid></control><display><type>article</type><title>Bounded inhomogeneous wave profiles for increased surface wave excitation efficiency at fluid–solid interfaces</title><source>American Institute of Physics</source><source>Alma/SFX Local Collection</source><source>AIP Acoustical Society of America</source><creator>Woods, Daniel C. ; Bolton, J. Stuart ; Rhoads, Jeffrey F.</creator><creatorcontrib>Woods, Daniel C. ; Bolton, J. Stuart ; Rhoads, Jeffrey F.</creatorcontrib><description>Though the ultrasonic excitation of surface waves in solids is generally realized through the use of a contact transducer, remote excitation would enable standoff testing in applications such as the nondestructive evaluation of structures. With respect to the optimal incident wave profile, bounded inhomogeneous waves, which include an exponentially decaying term, have been shown to improve the surface wave excitation efficiency as compared to Gaussian and square waves. The purpose of this work is to investigate the effect of varying the incident wave spatial decay rate, as applied to both lossless fluid–solid interfaces and to solids with viscoelastic losses included. The Fourier method is used to decompose the incident profile and subsequently compute the reflected wave profile. It is shown that inhomogeneous plane wave theory predicts, to a close approximation, the location of the minimum in the local reflection coefficient with respect to the decay rate for bounded incident waves. Moreover, plane wave theory gives a reasonable indication of the decay rate that maximizes the surface wave excitation efficiency.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/1.4979595</identifier><identifier>PMID: 28464622</identifier><identifier>CODEN: JASMAN</identifier><language>eng</language><publisher>United States</publisher><ispartof>The Journal of the Acoustical Society of America, 2017-04, Vol.141 (4), p.2779-2787</ispartof><rights>Acoustical Society of America</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-5cb28288f10828905a91c24c1b79dda837a12bec5d7beb8f605149caad35fdf3</citedby><cites>FETCH-LOGICAL-c355t-5cb28288f10828905a91c24c1b79dda837a12bec5d7beb8f605149caad35fdf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jasa/article-lookup/doi/10.1121/1.4979595$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>207,208,314,776,780,790,1559,4498,27901,27902,76127</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28464622$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Woods, Daniel C.</creatorcontrib><creatorcontrib>Bolton, J. Stuart</creatorcontrib><creatorcontrib>Rhoads, Jeffrey F.</creatorcontrib><title>Bounded inhomogeneous wave profiles for increased surface wave excitation efficiency at fluid–solid interfaces</title><title>The Journal of the Acoustical Society of America</title><addtitle>J Acoust Soc Am</addtitle><description>Though the ultrasonic excitation of surface waves in solids is generally realized through the use of a contact transducer, remote excitation would enable standoff testing in applications such as the nondestructive evaluation of structures. With respect to the optimal incident wave profile, bounded inhomogeneous waves, which include an exponentially decaying term, have been shown to improve the surface wave excitation efficiency as compared to Gaussian and square waves. The purpose of this work is to investigate the effect of varying the incident wave spatial decay rate, as applied to both lossless fluid–solid interfaces and to solids with viscoelastic losses included. The Fourier method is used to decompose the incident profile and subsequently compute the reflected wave profile. It is shown that inhomogeneous plane wave theory predicts, to a close approximation, the location of the minimum in the local reflection coefficient with respect to the decay rate for bounded incident waves. Moreover, plane wave theory gives a reasonable indication of the decay rate that maximizes the surface wave excitation efficiency.</description><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp90MtOxSAQBmBiNHq8LHwB06WaVIGWFpZ64i0xceO-oTAopi0VWvXsfAff0CcR7VFXupoQvvmT-RHaJfiIEEqOyVEuSsEEW0EzwihOOaP5KpphjEmai6LYQJshPMQn45lYRxuU50VeUDpD_akbOw06sd29a90ddODGkDzLJ0h674xtICTG-fivPMgQZRi9kQomAy_KDnKwrkvAGKssdGqRyCExzWj1--tbcI39TB_gaytsozUjmwA7y7mFbs_PbueX6fXNxdX85DpVGWNDylRNOeXcEByHwEwKomiuSF0KrSXPSkloDYrpsoaamwIzkgslpc6Y0SbbQvtTbDzicYQwVK0NCppGfh1YES5yQRguRaQHE1XeheDBVL23rfSLiuDqs9-KVMt-o91bxo51C_pHfhcaweEEwncv_6b9iZ-c_4VVHy_6AMT6lOY</recordid><startdate>201704</startdate><enddate>201704</enddate><creator>Woods, Daniel C.</creator><creator>Bolton, J. Stuart</creator><creator>Rhoads, Jeffrey F.</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201704</creationdate><title>Bounded inhomogeneous wave profiles for increased surface wave excitation efficiency at fluid–solid interfaces</title><author>Woods, Daniel C. ; Bolton, J. Stuart ; Rhoads, Jeffrey F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-5cb28288f10828905a91c24c1b79dda837a12bec5d7beb8f605149caad35fdf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Woods, Daniel C.</creatorcontrib><creatorcontrib>Bolton, J. Stuart</creatorcontrib><creatorcontrib>Rhoads, Jeffrey F.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Woods, Daniel C.</au><au>Bolton, J. Stuart</au><au>Rhoads, Jeffrey F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bounded inhomogeneous wave profiles for increased surface wave excitation efficiency at fluid–solid interfaces</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><addtitle>J Acoust Soc Am</addtitle><date>2017-04</date><risdate>2017</risdate><volume>141</volume><issue>4</issue><spage>2779</spage><epage>2787</epage><pages>2779-2787</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><coden>JASMAN</coden><abstract>Though the ultrasonic excitation of surface waves in solids is generally realized through the use of a contact transducer, remote excitation would enable standoff testing in applications such as the nondestructive evaluation of structures. With respect to the optimal incident wave profile, bounded inhomogeneous waves, which include an exponentially decaying term, have been shown to improve the surface wave excitation efficiency as compared to Gaussian and square waves. The purpose of this work is to investigate the effect of varying the incident wave spatial decay rate, as applied to both lossless fluid–solid interfaces and to solids with viscoelastic losses included. The Fourier method is used to decompose the incident profile and subsequently compute the reflected wave profile. It is shown that inhomogeneous plane wave theory predicts, to a close approximation, the location of the minimum in the local reflection coefficient with respect to the decay rate for bounded incident waves. Moreover, plane wave theory gives a reasonable indication of the decay rate that maximizes the surface wave excitation efficiency.</abstract><cop>United States</cop><pmid>28464622</pmid><doi>10.1121/1.4979595</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-4966
ispartof The Journal of the Acoustical Society of America, 2017-04, Vol.141 (4), p.2779-2787
issn 0001-4966
1520-8524
language eng
recordid cdi_proquest_miscellaneous_1894915079
source American Institute of Physics; Alma/SFX Local Collection; AIP Acoustical Society of America
title Bounded inhomogeneous wave profiles for increased surface wave excitation efficiency at fluid–solid interfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T07%3A25%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bounded%20inhomogeneous%20wave%20profiles%20for%20increased%20surface%20wave%20excitation%20efficiency%20at%20fluid%E2%80%93solid%20interfaces&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Woods,%20Daniel%20C.&rft.date=2017-04&rft.volume=141&rft.issue=4&rft.spage=2779&rft.epage=2787&rft.pages=2779-2787&rft.issn=0001-4966&rft.eissn=1520-8524&rft.coden=JASMAN&rft_id=info:doi/10.1121/1.4979595&rft_dat=%3Cproquest_cross%3E1894915079%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1894915079&rft_id=info:pmid/28464622&rfr_iscdi=true