Automatic detection of trichomonads based on an improved Kalman background reconstruction algorithm

Automatic detection of trichomonads in leukorrhea provides important information for evaluating gynecological diseases. Traditional manual microscopy, which depends on the operator's expertise and subjective factors, has high false-positive rates (i.e., low specificity) and low efficiency. To d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Optical Society of America. A, Optics, image science, and vision Optics, image science, and vision, 2017-05, Vol.34 (5), p.752-759
Hauptverfasser: Hao, Ruqian, Wang, Xiangzhou, Zhang, Jing, Liu, Juanxiu, Ni, Guangming, Du, XiaoHui, Liu, Lin, Liu, Yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 759
container_issue 5
container_start_page 752
container_title Journal of the Optical Society of America. A, Optics, image science, and vision
container_volume 34
creator Hao, Ruqian
Wang, Xiangzhou
Zhang, Jing
Liu, Juanxiu
Ni, Guangming
Du, XiaoHui
Liu, Lin
Liu, Yong
description Automatic detection of trichomonads in leukorrhea provides important information for evaluating gynecological diseases. Traditional manual microscopy, which depends on the operator's expertise and subjective factors, has high false-positive rates (i.e., low specificity) and low efficiency. To date, there are many detection methods for biological cells based on morphological characteristics. However, the morphology of trichomonads changes, and its size is not fixed; moreover, they are similar to human leukocytes. Therefore, it is difficult to classify trichomonads based on morphological characteristics. In this study, a moving object detection method based on an improved Kalman background reconstruction algorithm is proposed to detect trichomonads automatically, considering the dynamic characteristics of trichomonads at room temperature. The experimental results show that the trichomonads can be accurately identified, and the phenomena of tailing and ghosts are eliminated. Furthermore, this algorithm easily adapts to continuous or sudden changes in light, focal length variation, and the impact of lens shift, and it has good robustness and only a moderate amount of calculation burden.
doi_str_mv 10.1364/JOSAA.34.000752
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1894520335</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1894520335</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-622f645260adf6480b812d006a385eecf7726ea11c362cf22c1d423dac0303583</originalsourceid><addsrcrecordid>eNo9kL1PwzAQxS0EoqUws6GMLGn9FccZq4rvSh2A2XJspw3EcbEdJP57DClM9-7u3dPpB8AlgnNEGF08bp6XyzmhcwhhWeAjMEUFhjkvCD5OGnKap3E1AWchvCUPZbw8BRPMKSMEVVOglkN0VsZWZdpEo2Lr-sw1WfSt2jnreqlDVstgdJYWss9au_fuM7VPsrOpr6V633o39DrzRrk-RD-MKbLbOt_GnT0HJ43sgrk41Bl4vb15Wd3n683dw2q5zhWuypgzjBtGC8yg1ElwWHOENYRMEl4Yo5qyxMxIhBRhWDUYK6QpJloqSCApOJmB6zE3ffgxmBCFbYMyXSd744YgEK9SPCSkSNbFaFXeheBNI_a-tdJ_CQTFD1nxS1YQKkay6eLqED7U1uh__x9K8g2ENHUB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1894520335</pqid></control><display><type>article</type><title>Automatic detection of trichomonads based on an improved Kalman background reconstruction algorithm</title><source>MEDLINE</source><source>Optica Publishing Group Journals</source><creator>Hao, Ruqian ; Wang, Xiangzhou ; Zhang, Jing ; Liu, Juanxiu ; Ni, Guangming ; Du, XiaoHui ; Liu, Lin ; Liu, Yong</creator><creatorcontrib>Hao, Ruqian ; Wang, Xiangzhou ; Zhang, Jing ; Liu, Juanxiu ; Ni, Guangming ; Du, XiaoHui ; Liu, Lin ; Liu, Yong</creatorcontrib><description>Automatic detection of trichomonads in leukorrhea provides important information for evaluating gynecological diseases. Traditional manual microscopy, which depends on the operator's expertise and subjective factors, has high false-positive rates (i.e., low specificity) and low efficiency. To date, there are many detection methods for biological cells based on morphological characteristics. However, the morphology of trichomonads changes, and its size is not fixed; moreover, they are similar to human leukocytes. Therefore, it is difficult to classify trichomonads based on morphological characteristics. In this study, a moving object detection method based on an improved Kalman background reconstruction algorithm is proposed to detect trichomonads automatically, considering the dynamic characteristics of trichomonads at room temperature. The experimental results show that the trichomonads can be accurately identified, and the phenomena of tailing and ghosts are eliminated. Furthermore, this algorithm easily adapts to continuous or sudden changes in light, focal length variation, and the impact of lens shift, and it has good robustness and only a moderate amount of calculation burden.</description><identifier>ISSN: 1084-7529</identifier><identifier>EISSN: 1520-8532</identifier><identifier>DOI: 10.1364/JOSAA.34.000752</identifier><identifier>PMID: 28463319</identifier><language>eng</language><publisher>United States</publisher><subject>Algorithms ; False Positive Reactions ; Female ; Humans ; Image Processing, Computer-Assisted - methods ; Leukorrhea - parasitology ; Microscopy - methods ; Pattern Recognition, Automated - methods ; Predictive Value of Tests ; Reproducibility of Results ; Sensitivity and Specificity ; Trichomonas vaginalis - isolation &amp; purification ; Trichomonas Vaginitis - diagnosis ; Trichomonas Vaginitis - microbiology</subject><ispartof>Journal of the Optical Society of America. A, Optics, image science, and vision, 2017-05, Vol.34 (5), p.752-759</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-622f645260adf6480b812d006a385eecf7726ea11c362cf22c1d423dac0303583</citedby><cites>FETCH-LOGICAL-c297t-622f645260adf6480b812d006a385eecf7726ea11c362cf22c1d423dac0303583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3256,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28463319$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hao, Ruqian</creatorcontrib><creatorcontrib>Wang, Xiangzhou</creatorcontrib><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Liu, Juanxiu</creatorcontrib><creatorcontrib>Ni, Guangming</creatorcontrib><creatorcontrib>Du, XiaoHui</creatorcontrib><creatorcontrib>Liu, Lin</creatorcontrib><creatorcontrib>Liu, Yong</creatorcontrib><title>Automatic detection of trichomonads based on an improved Kalman background reconstruction algorithm</title><title>Journal of the Optical Society of America. A, Optics, image science, and vision</title><addtitle>J Opt Soc Am A Opt Image Sci Vis</addtitle><description>Automatic detection of trichomonads in leukorrhea provides important information for evaluating gynecological diseases. Traditional manual microscopy, which depends on the operator's expertise and subjective factors, has high false-positive rates (i.e., low specificity) and low efficiency. To date, there are many detection methods for biological cells based on morphological characteristics. However, the morphology of trichomonads changes, and its size is not fixed; moreover, they are similar to human leukocytes. Therefore, it is difficult to classify trichomonads based on morphological characteristics. In this study, a moving object detection method based on an improved Kalman background reconstruction algorithm is proposed to detect trichomonads automatically, considering the dynamic characteristics of trichomonads at room temperature. The experimental results show that the trichomonads can be accurately identified, and the phenomena of tailing and ghosts are eliminated. Furthermore, this algorithm easily adapts to continuous or sudden changes in light, focal length variation, and the impact of lens shift, and it has good robustness and only a moderate amount of calculation burden.</description><subject>Algorithms</subject><subject>False Positive Reactions</subject><subject>Female</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Leukorrhea - parasitology</subject><subject>Microscopy - methods</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Predictive Value of Tests</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Trichomonas vaginalis - isolation &amp; purification</subject><subject>Trichomonas Vaginitis - diagnosis</subject><subject>Trichomonas Vaginitis - microbiology</subject><issn>1084-7529</issn><issn>1520-8532</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kL1PwzAQxS0EoqUws6GMLGn9FccZq4rvSh2A2XJspw3EcbEdJP57DClM9-7u3dPpB8AlgnNEGF08bp6XyzmhcwhhWeAjMEUFhjkvCD5OGnKap3E1AWchvCUPZbw8BRPMKSMEVVOglkN0VsZWZdpEo2Lr-sw1WfSt2jnreqlDVstgdJYWss9au_fuM7VPsrOpr6V633o39DrzRrk-RD-MKbLbOt_GnT0HJ43sgrk41Bl4vb15Wd3n683dw2q5zhWuypgzjBtGC8yg1ElwWHOENYRMEl4Yo5qyxMxIhBRhWDUYK6QpJloqSCApOJmB6zE3ffgxmBCFbYMyXSd744YgEK9SPCSkSNbFaFXeheBNI_a-tdJ_CQTFD1nxS1YQKkay6eLqED7U1uh__x9K8g2ENHUB</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Hao, Ruqian</creator><creator>Wang, Xiangzhou</creator><creator>Zhang, Jing</creator><creator>Liu, Juanxiu</creator><creator>Ni, Guangming</creator><creator>Du, XiaoHui</creator><creator>Liu, Lin</creator><creator>Liu, Yong</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20170501</creationdate><title>Automatic detection of trichomonads based on an improved Kalman background reconstruction algorithm</title><author>Hao, Ruqian ; Wang, Xiangzhou ; Zhang, Jing ; Liu, Juanxiu ; Ni, Guangming ; Du, XiaoHui ; Liu, Lin ; Liu, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-622f645260adf6480b812d006a385eecf7726ea11c362cf22c1d423dac0303583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>False Positive Reactions</topic><topic>Female</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Leukorrhea - parasitology</topic><topic>Microscopy - methods</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Predictive Value of Tests</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Trichomonas vaginalis - isolation &amp; purification</topic><topic>Trichomonas Vaginitis - diagnosis</topic><topic>Trichomonas Vaginitis - microbiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hao, Ruqian</creatorcontrib><creatorcontrib>Wang, Xiangzhou</creatorcontrib><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Liu, Juanxiu</creatorcontrib><creatorcontrib>Ni, Guangming</creatorcontrib><creatorcontrib>Du, XiaoHui</creatorcontrib><creatorcontrib>Liu, Lin</creatorcontrib><creatorcontrib>Liu, Yong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the Optical Society of America. A, Optics, image science, and vision</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hao, Ruqian</au><au>Wang, Xiangzhou</au><au>Zhang, Jing</au><au>Liu, Juanxiu</au><au>Ni, Guangming</au><au>Du, XiaoHui</au><au>Liu, Lin</au><au>Liu, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic detection of trichomonads based on an improved Kalman background reconstruction algorithm</atitle><jtitle>Journal of the Optical Society of America. A, Optics, image science, and vision</jtitle><addtitle>J Opt Soc Am A Opt Image Sci Vis</addtitle><date>2017-05-01</date><risdate>2017</risdate><volume>34</volume><issue>5</issue><spage>752</spage><epage>759</epage><pages>752-759</pages><issn>1084-7529</issn><eissn>1520-8532</eissn><abstract>Automatic detection of trichomonads in leukorrhea provides important information for evaluating gynecological diseases. Traditional manual microscopy, which depends on the operator's expertise and subjective factors, has high false-positive rates (i.e., low specificity) and low efficiency. To date, there are many detection methods for biological cells based on morphological characteristics. However, the morphology of trichomonads changes, and its size is not fixed; moreover, they are similar to human leukocytes. Therefore, it is difficult to classify trichomonads based on morphological characteristics. In this study, a moving object detection method based on an improved Kalman background reconstruction algorithm is proposed to detect trichomonads automatically, considering the dynamic characteristics of trichomonads at room temperature. The experimental results show that the trichomonads can be accurately identified, and the phenomena of tailing and ghosts are eliminated. Furthermore, this algorithm easily adapts to continuous or sudden changes in light, focal length variation, and the impact of lens shift, and it has good robustness and only a moderate amount of calculation burden.</abstract><cop>United States</cop><pmid>28463319</pmid><doi>10.1364/JOSAA.34.000752</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1084-7529
ispartof Journal of the Optical Society of America. A, Optics, image science, and vision, 2017-05, Vol.34 (5), p.752-759
issn 1084-7529
1520-8532
language eng
recordid cdi_proquest_miscellaneous_1894520335
source MEDLINE; Optica Publishing Group Journals
subjects Algorithms
False Positive Reactions
Female
Humans
Image Processing, Computer-Assisted - methods
Leukorrhea - parasitology
Microscopy - methods
Pattern Recognition, Automated - methods
Predictive Value of Tests
Reproducibility of Results
Sensitivity and Specificity
Trichomonas vaginalis - isolation & purification
Trichomonas Vaginitis - diagnosis
Trichomonas Vaginitis - microbiology
title Automatic detection of trichomonads based on an improved Kalman background reconstruction algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T15%3A56%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20detection%20of%20trichomonads%20based%20on%20an%20improved%20Kalman%20background%20reconstruction%20algorithm&rft.jtitle=Journal%20of%20the%20Optical%20Society%20of%20America.%20A,%20Optics,%20image%20science,%20and%20vision&rft.au=Hao,%20Ruqian&rft.date=2017-05-01&rft.volume=34&rft.issue=5&rft.spage=752&rft.epage=759&rft.pages=752-759&rft.issn=1084-7529&rft.eissn=1520-8532&rft_id=info:doi/10.1364/JOSAA.34.000752&rft_dat=%3Cproquest_cross%3E1894520335%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1894520335&rft_id=info:pmid/28463319&rfr_iscdi=true