Automatic detection of trichomonads based on an improved Kalman background reconstruction algorithm
Automatic detection of trichomonads in leukorrhea provides important information for evaluating gynecological diseases. Traditional manual microscopy, which depends on the operator's expertise and subjective factors, has high false-positive rates (i.e., low specificity) and low efficiency. To d...
Gespeichert in:
Veröffentlicht in: | Journal of the Optical Society of America. A, Optics, image science, and vision Optics, image science, and vision, 2017-05, Vol.34 (5), p.752-759 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 759 |
---|---|
container_issue | 5 |
container_start_page | 752 |
container_title | Journal of the Optical Society of America. A, Optics, image science, and vision |
container_volume | 34 |
creator | Hao, Ruqian Wang, Xiangzhou Zhang, Jing Liu, Juanxiu Ni, Guangming Du, XiaoHui Liu, Lin Liu, Yong |
description | Automatic detection of trichomonads in leukorrhea provides important information for evaluating gynecological diseases. Traditional manual microscopy, which depends on the operator's expertise and subjective factors, has high false-positive rates (i.e., low specificity) and low efficiency. To date, there are many detection methods for biological cells based on morphological characteristics. However, the morphology of trichomonads changes, and its size is not fixed; moreover, they are similar to human leukocytes. Therefore, it is difficult to classify trichomonads based on morphological characteristics. In this study, a moving object detection method based on an improved Kalman background reconstruction algorithm is proposed to detect trichomonads automatically, considering the dynamic characteristics of trichomonads at room temperature. The experimental results show that the trichomonads can be accurately identified, and the phenomena of tailing and ghosts are eliminated. Furthermore, this algorithm easily adapts to continuous or sudden changes in light, focal length variation, and the impact of lens shift, and it has good robustness and only a moderate amount of calculation burden. |
doi_str_mv | 10.1364/JOSAA.34.000752 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1894520335</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1894520335</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-622f645260adf6480b812d006a385eecf7726ea11c362cf22c1d423dac0303583</originalsourceid><addsrcrecordid>eNo9kL1PwzAQxS0EoqUws6GMLGn9FccZq4rvSh2A2XJspw3EcbEdJP57DClM9-7u3dPpB8AlgnNEGF08bp6XyzmhcwhhWeAjMEUFhjkvCD5OGnKap3E1AWchvCUPZbw8BRPMKSMEVVOglkN0VsZWZdpEo2Lr-sw1WfSt2jnreqlDVstgdJYWss9au_fuM7VPsrOpr6V633o39DrzRrk-RD-MKbLbOt_GnT0HJ43sgrk41Bl4vb15Wd3n683dw2q5zhWuypgzjBtGC8yg1ElwWHOENYRMEl4Yo5qyxMxIhBRhWDUYK6QpJloqSCApOJmB6zE3ffgxmBCFbYMyXSd744YgEK9SPCSkSNbFaFXeheBNI_a-tdJ_CQTFD1nxS1YQKkay6eLqED7U1uh__x9K8g2ENHUB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1894520335</pqid></control><display><type>article</type><title>Automatic detection of trichomonads based on an improved Kalman background reconstruction algorithm</title><source>MEDLINE</source><source>Optica Publishing Group Journals</source><creator>Hao, Ruqian ; Wang, Xiangzhou ; Zhang, Jing ; Liu, Juanxiu ; Ni, Guangming ; Du, XiaoHui ; Liu, Lin ; Liu, Yong</creator><creatorcontrib>Hao, Ruqian ; Wang, Xiangzhou ; Zhang, Jing ; Liu, Juanxiu ; Ni, Guangming ; Du, XiaoHui ; Liu, Lin ; Liu, Yong</creatorcontrib><description>Automatic detection of trichomonads in leukorrhea provides important information for evaluating gynecological diseases. Traditional manual microscopy, which depends on the operator's expertise and subjective factors, has high false-positive rates (i.e., low specificity) and low efficiency. To date, there are many detection methods for biological cells based on morphological characteristics. However, the morphology of trichomonads changes, and its size is not fixed; moreover, they are similar to human leukocytes. Therefore, it is difficult to classify trichomonads based on morphological characteristics. In this study, a moving object detection method based on an improved Kalman background reconstruction algorithm is proposed to detect trichomonads automatically, considering the dynamic characteristics of trichomonads at room temperature. The experimental results show that the trichomonads can be accurately identified, and the phenomena of tailing and ghosts are eliminated. Furthermore, this algorithm easily adapts to continuous or sudden changes in light, focal length variation, and the impact of lens shift, and it has good robustness and only a moderate amount of calculation burden.</description><identifier>ISSN: 1084-7529</identifier><identifier>EISSN: 1520-8532</identifier><identifier>DOI: 10.1364/JOSAA.34.000752</identifier><identifier>PMID: 28463319</identifier><language>eng</language><publisher>United States</publisher><subject>Algorithms ; False Positive Reactions ; Female ; Humans ; Image Processing, Computer-Assisted - methods ; Leukorrhea - parasitology ; Microscopy - methods ; Pattern Recognition, Automated - methods ; Predictive Value of Tests ; Reproducibility of Results ; Sensitivity and Specificity ; Trichomonas vaginalis - isolation & purification ; Trichomonas Vaginitis - diagnosis ; Trichomonas Vaginitis - microbiology</subject><ispartof>Journal of the Optical Society of America. A, Optics, image science, and vision, 2017-05, Vol.34 (5), p.752-759</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-622f645260adf6480b812d006a385eecf7726ea11c362cf22c1d423dac0303583</citedby><cites>FETCH-LOGICAL-c297t-622f645260adf6480b812d006a385eecf7726ea11c362cf22c1d423dac0303583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3256,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28463319$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hao, Ruqian</creatorcontrib><creatorcontrib>Wang, Xiangzhou</creatorcontrib><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Liu, Juanxiu</creatorcontrib><creatorcontrib>Ni, Guangming</creatorcontrib><creatorcontrib>Du, XiaoHui</creatorcontrib><creatorcontrib>Liu, Lin</creatorcontrib><creatorcontrib>Liu, Yong</creatorcontrib><title>Automatic detection of trichomonads based on an improved Kalman background reconstruction algorithm</title><title>Journal of the Optical Society of America. A, Optics, image science, and vision</title><addtitle>J Opt Soc Am A Opt Image Sci Vis</addtitle><description>Automatic detection of trichomonads in leukorrhea provides important information for evaluating gynecological diseases. Traditional manual microscopy, which depends on the operator's expertise and subjective factors, has high false-positive rates (i.e., low specificity) and low efficiency. To date, there are many detection methods for biological cells based on morphological characteristics. However, the morphology of trichomonads changes, and its size is not fixed; moreover, they are similar to human leukocytes. Therefore, it is difficult to classify trichomonads based on morphological characteristics. In this study, a moving object detection method based on an improved Kalman background reconstruction algorithm is proposed to detect trichomonads automatically, considering the dynamic characteristics of trichomonads at room temperature. The experimental results show that the trichomonads can be accurately identified, and the phenomena of tailing and ghosts are eliminated. Furthermore, this algorithm easily adapts to continuous or sudden changes in light, focal length variation, and the impact of lens shift, and it has good robustness and only a moderate amount of calculation burden.</description><subject>Algorithms</subject><subject>False Positive Reactions</subject><subject>Female</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Leukorrhea - parasitology</subject><subject>Microscopy - methods</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Predictive Value of Tests</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Trichomonas vaginalis - isolation & purification</subject><subject>Trichomonas Vaginitis - diagnosis</subject><subject>Trichomonas Vaginitis - microbiology</subject><issn>1084-7529</issn><issn>1520-8532</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kL1PwzAQxS0EoqUws6GMLGn9FccZq4rvSh2A2XJspw3EcbEdJP57DClM9-7u3dPpB8AlgnNEGF08bp6XyzmhcwhhWeAjMEUFhjkvCD5OGnKap3E1AWchvCUPZbw8BRPMKSMEVVOglkN0VsZWZdpEo2Lr-sw1WfSt2jnreqlDVstgdJYWss9au_fuM7VPsrOpr6V633o39DrzRrk-RD-MKbLbOt_GnT0HJ43sgrk41Bl4vb15Wd3n683dw2q5zhWuypgzjBtGC8yg1ElwWHOENYRMEl4Yo5qyxMxIhBRhWDUYK6QpJloqSCApOJmB6zE3ffgxmBCFbYMyXSd744YgEK9SPCSkSNbFaFXeheBNI_a-tdJ_CQTFD1nxS1YQKkay6eLqED7U1uh__x9K8g2ENHUB</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Hao, Ruqian</creator><creator>Wang, Xiangzhou</creator><creator>Zhang, Jing</creator><creator>Liu, Juanxiu</creator><creator>Ni, Guangming</creator><creator>Du, XiaoHui</creator><creator>Liu, Lin</creator><creator>Liu, Yong</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20170501</creationdate><title>Automatic detection of trichomonads based on an improved Kalman background reconstruction algorithm</title><author>Hao, Ruqian ; Wang, Xiangzhou ; Zhang, Jing ; Liu, Juanxiu ; Ni, Guangming ; Du, XiaoHui ; Liu, Lin ; Liu, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-622f645260adf6480b812d006a385eecf7726ea11c362cf22c1d423dac0303583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>False Positive Reactions</topic><topic>Female</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Leukorrhea - parasitology</topic><topic>Microscopy - methods</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Predictive Value of Tests</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Trichomonas vaginalis - isolation & purification</topic><topic>Trichomonas Vaginitis - diagnosis</topic><topic>Trichomonas Vaginitis - microbiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hao, Ruqian</creatorcontrib><creatorcontrib>Wang, Xiangzhou</creatorcontrib><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Liu, Juanxiu</creatorcontrib><creatorcontrib>Ni, Guangming</creatorcontrib><creatorcontrib>Du, XiaoHui</creatorcontrib><creatorcontrib>Liu, Lin</creatorcontrib><creatorcontrib>Liu, Yong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the Optical Society of America. A, Optics, image science, and vision</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hao, Ruqian</au><au>Wang, Xiangzhou</au><au>Zhang, Jing</au><au>Liu, Juanxiu</au><au>Ni, Guangming</au><au>Du, XiaoHui</au><au>Liu, Lin</au><au>Liu, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic detection of trichomonads based on an improved Kalman background reconstruction algorithm</atitle><jtitle>Journal of the Optical Society of America. A, Optics, image science, and vision</jtitle><addtitle>J Opt Soc Am A Opt Image Sci Vis</addtitle><date>2017-05-01</date><risdate>2017</risdate><volume>34</volume><issue>5</issue><spage>752</spage><epage>759</epage><pages>752-759</pages><issn>1084-7529</issn><eissn>1520-8532</eissn><abstract>Automatic detection of trichomonads in leukorrhea provides important information for evaluating gynecological diseases. Traditional manual microscopy, which depends on the operator's expertise and subjective factors, has high false-positive rates (i.e., low specificity) and low efficiency. To date, there are many detection methods for biological cells based on morphological characteristics. However, the morphology of trichomonads changes, and its size is not fixed; moreover, they are similar to human leukocytes. Therefore, it is difficult to classify trichomonads based on morphological characteristics. In this study, a moving object detection method based on an improved Kalman background reconstruction algorithm is proposed to detect trichomonads automatically, considering the dynamic characteristics of trichomonads at room temperature. The experimental results show that the trichomonads can be accurately identified, and the phenomena of tailing and ghosts are eliminated. Furthermore, this algorithm easily adapts to continuous or sudden changes in light, focal length variation, and the impact of lens shift, and it has good robustness and only a moderate amount of calculation burden.</abstract><cop>United States</cop><pmid>28463319</pmid><doi>10.1364/JOSAA.34.000752</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1084-7529 |
ispartof | Journal of the Optical Society of America. A, Optics, image science, and vision, 2017-05, Vol.34 (5), p.752-759 |
issn | 1084-7529 1520-8532 |
language | eng |
recordid | cdi_proquest_miscellaneous_1894520335 |
source | MEDLINE; Optica Publishing Group Journals |
subjects | Algorithms False Positive Reactions Female Humans Image Processing, Computer-Assisted - methods Leukorrhea - parasitology Microscopy - methods Pattern Recognition, Automated - methods Predictive Value of Tests Reproducibility of Results Sensitivity and Specificity Trichomonas vaginalis - isolation & purification Trichomonas Vaginitis - diagnosis Trichomonas Vaginitis - microbiology |
title | Automatic detection of trichomonads based on an improved Kalman background reconstruction algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T15%3A56%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20detection%20of%20trichomonads%20based%20on%20an%20improved%20Kalman%20background%20reconstruction%20algorithm&rft.jtitle=Journal%20of%20the%20Optical%20Society%20of%20America.%20A,%20Optics,%20image%20science,%20and%20vision&rft.au=Hao,%20Ruqian&rft.date=2017-05-01&rft.volume=34&rft.issue=5&rft.spage=752&rft.epage=759&rft.pages=752-759&rft.issn=1084-7529&rft.eissn=1520-8532&rft_id=info:doi/10.1364/JOSAA.34.000752&rft_dat=%3Cproquest_cross%3E1894520335%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1894520335&rft_id=info:pmid/28463319&rfr_iscdi=true |