Automatic Segmentation of Dermoscopy Images using Saliency Combined with Otsu Threshold

Abstract Segmentation is one of the crucial steps for the computer-aided diagnosis (CAD) of skin cancer with dermoscopy images. To accurately extract lesion borders from dermoscopy images, a novel automatic segmentation algorithm using saliency combined with Otsu threshold is proposed in this paper,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers in biology and medicine 2017-06, Vol.85, p.75-85
Hauptverfasser: Fan, Haidi, Xie, Fengying, Li, Yang, Jiang, Zhiguo, Liu, Jie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 85
container_issue
container_start_page 75
container_title Computers in biology and medicine
container_volume 85
creator Fan, Haidi
Xie, Fengying
Li, Yang
Jiang, Zhiguo
Liu, Jie
description Abstract Segmentation is one of the crucial steps for the computer-aided diagnosis (CAD) of skin cancer with dermoscopy images. To accurately extract lesion borders from dermoscopy images, a novel automatic segmentation algorithm using saliency combined with Otsu threshold is proposed in this paper, which includes enhancement and segmentation stages. In the enhancement stage, prior information on healthy skin is extracted, and the color saliency map and brightness saliency map are constructed respectively. By fusing the two saliency maps, the final enhanced image is obtained. In the segmentation stage, according to the histogram distribution of the enhanced image, an optimization function is designed to adjust the traditional Otsu threshold method to obtain more accurate lesion borders. The proposed model is validated from enhancement effectiveness and segmentation accuracy. Experimental results demonstrate that our method is robust and performs better than other state-of-the-art methods.
doi_str_mv 10.1016/j.compbiomed.2017.03.025
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1894519582</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S001048251730080X</els_id><sourcerecordid>1904826064</sourcerecordid><originalsourceid>FETCH-LOGICAL-c457t-e245c2e3cdd2d0c6a341cbafab421a7b3aca71af87c168b257ebaeef51bdf1a83</originalsourceid><addsrcrecordid>eNqNkktr3DAQgEVpabZJ_0IR9NKL3dHDtvZSSDdpEgjksCnpTcjyeFdb29pKdsv--8hsQiCnnkYw3zz0MYRQBjkDVn7d5db3-9r5HpucA6tyEDnw4g1ZMFUtMyiEfEsWAAwyqXhxQj7EuAMACQLekxOuZJlwtSAP59PoezM6S9e46XEY09sP1Lf0AkPvo_X7A73pzQYjnaIbNnRtOoeDPdCV72s3YEP_uXFL78Y40fttwLj1XXNG3rWmi_jxKZ6Snz8u71fX2e3d1c3q_DazsqjGDLksLEdhm4Y3YEsjJLO1aU0tOTNVLYw1FTOtqiwrVc2LCmuD2BasblpmlDglX45998H_mTCOunfRYteZAf0UNVNLWbBloXhCP79Cd34KQ9pOsyUkTSWUMlHqSNngYwzY6n1wvQkHzUDP8vVOv8jXs3wNQiebqfTT04CpnnPPhc-2E_D9CGAy8tdh0NHOKrFxAe2oG-_-Z8q3V01s5wZnTfcbDxhf_qQj16DX8xHMN8AqAaDgl3gEhQexDA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1904826064</pqid></control><display><type>article</type><title>Automatic Segmentation of Dermoscopy Images using Saliency Combined with Otsu Threshold</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><source>ProQuest Central UK/Ireland</source><creator>Fan, Haidi ; Xie, Fengying ; Li, Yang ; Jiang, Zhiguo ; Liu, Jie</creator><creatorcontrib>Fan, Haidi ; Xie, Fengying ; Li, Yang ; Jiang, Zhiguo ; Liu, Jie</creatorcontrib><description>Abstract Segmentation is one of the crucial steps for the computer-aided diagnosis (CAD) of skin cancer with dermoscopy images. To accurately extract lesion borders from dermoscopy images, a novel automatic segmentation algorithm using saliency combined with Otsu threshold is proposed in this paper, which includes enhancement and segmentation stages. In the enhancement stage, prior information on healthy skin is extracted, and the color saliency map and brightness saliency map are constructed respectively. By fusing the two saliency maps, the final enhanced image is obtained. In the segmentation stage, according to the histogram distribution of the enhanced image, an optimization function is designed to adjust the traditional Otsu threshold method to obtain more accurate lesion borders. The proposed model is validated from enhancement effectiveness and segmentation accuracy. Experimental results demonstrate that our method is robust and performs better than other state-of-the-art methods.</description><identifier>ISSN: 0010-4825</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2017.03.025</identifier><identifier>PMID: 28460258</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Accuracy ; Algorithms ; Automatic segmentation ; Automation ; Borders ; Brightness ; CAD ; Cancer ; Cluster Analysis ; Color ; Computer aided design ; Computer-aided diagnosis ; Databases, Factual ; Dermatology ; Dermoscopy - methods ; Dermoscopy images ; Diagnosis ; Genetic algorithms ; Humans ; Image Interpretation, Computer-Assisted - methods ; Image processing ; Image segmentation ; Internal Medicine ; International conferences ; Medical diagnosis ; Melanoma ; Methods ; Microscopy ; Neurosciences ; Optimization ; Other ; Pattern recognition ; Researchers ; Robustness ; Saliency ; Skin cancer ; Skin Neoplasms - diagnostic imaging ; State of the art ; Threshold</subject><ispartof>Computers in biology and medicine, 2017-06, Vol.85, p.75-85</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright © 2017 Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier Limited Jun 1, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c457t-e245c2e3cdd2d0c6a341cbafab421a7b3aca71af87c168b257ebaeef51bdf1a83</citedby><cites>FETCH-LOGICAL-c457t-e245c2e3cdd2d0c6a341cbafab421a7b3aca71af87c168b257ebaeef51bdf1a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1904826064?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995,64385,64387,64389,72469</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28460258$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fan, Haidi</creatorcontrib><creatorcontrib>Xie, Fengying</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Jiang, Zhiguo</creatorcontrib><creatorcontrib>Liu, Jie</creatorcontrib><title>Automatic Segmentation of Dermoscopy Images using Saliency Combined with Otsu Threshold</title><title>Computers in biology and medicine</title><addtitle>Comput Biol Med</addtitle><description>Abstract Segmentation is one of the crucial steps for the computer-aided diagnosis (CAD) of skin cancer with dermoscopy images. To accurately extract lesion borders from dermoscopy images, a novel automatic segmentation algorithm using saliency combined with Otsu threshold is proposed in this paper, which includes enhancement and segmentation stages. In the enhancement stage, prior information on healthy skin is extracted, and the color saliency map and brightness saliency map are constructed respectively. By fusing the two saliency maps, the final enhanced image is obtained. In the segmentation stage, according to the histogram distribution of the enhanced image, an optimization function is designed to adjust the traditional Otsu threshold method to obtain more accurate lesion borders. The proposed model is validated from enhancement effectiveness and segmentation accuracy. Experimental results demonstrate that our method is robust and performs better than other state-of-the-art methods.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Automatic segmentation</subject><subject>Automation</subject><subject>Borders</subject><subject>Brightness</subject><subject>CAD</subject><subject>Cancer</subject><subject>Cluster Analysis</subject><subject>Color</subject><subject>Computer aided design</subject><subject>Computer-aided diagnosis</subject><subject>Databases, Factual</subject><subject>Dermatology</subject><subject>Dermoscopy - methods</subject><subject>Dermoscopy images</subject><subject>Diagnosis</subject><subject>Genetic algorithms</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Internal Medicine</subject><subject>International conferences</subject><subject>Medical diagnosis</subject><subject>Melanoma</subject><subject>Methods</subject><subject>Microscopy</subject><subject>Neurosciences</subject><subject>Optimization</subject><subject>Other</subject><subject>Pattern recognition</subject><subject>Researchers</subject><subject>Robustness</subject><subject>Saliency</subject><subject>Skin cancer</subject><subject>Skin Neoplasms - diagnostic imaging</subject><subject>State of the art</subject><subject>Threshold</subject><issn>0010-4825</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkktr3DAQgEVpabZJ_0IR9NKL3dHDtvZSSDdpEgjksCnpTcjyeFdb29pKdsv--8hsQiCnnkYw3zz0MYRQBjkDVn7d5db3-9r5HpucA6tyEDnw4g1ZMFUtMyiEfEsWAAwyqXhxQj7EuAMACQLekxOuZJlwtSAP59PoezM6S9e46XEY09sP1Lf0AkPvo_X7A73pzQYjnaIbNnRtOoeDPdCV72s3YEP_uXFL78Y40fttwLj1XXNG3rWmi_jxKZ6Snz8u71fX2e3d1c3q_DazsqjGDLksLEdhm4Y3YEsjJLO1aU0tOTNVLYw1FTOtqiwrVc2LCmuD2BasblpmlDglX45998H_mTCOunfRYteZAf0UNVNLWbBloXhCP79Cd34KQ9pOsyUkTSWUMlHqSNngYwzY6n1wvQkHzUDP8vVOv8jXs3wNQiebqfTT04CpnnPPhc-2E_D9CGAy8tdh0NHOKrFxAe2oG-_-Z8q3V01s5wZnTfcbDxhf_qQj16DX8xHMN8AqAaDgl3gEhQexDA</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Fan, Haidi</creator><creator>Xie, Fengying</creator><creator>Li, Yang</creator><creator>Jiang, Zhiguo</creator><creator>Liu, Jie</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7Z</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20170601</creationdate><title>Automatic Segmentation of Dermoscopy Images using Saliency Combined with Otsu Threshold</title><author>Fan, Haidi ; Xie, Fengying ; Li, Yang ; Jiang, Zhiguo ; Liu, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c457t-e245c2e3cdd2d0c6a341cbafab421a7b3aca71af87c168b257ebaeef51bdf1a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Automatic segmentation</topic><topic>Automation</topic><topic>Borders</topic><topic>Brightness</topic><topic>CAD</topic><topic>Cancer</topic><topic>Cluster Analysis</topic><topic>Color</topic><topic>Computer aided design</topic><topic>Computer-aided diagnosis</topic><topic>Databases, Factual</topic><topic>Dermatology</topic><topic>Dermoscopy - methods</topic><topic>Dermoscopy images</topic><topic>Diagnosis</topic><topic>Genetic algorithms</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Internal Medicine</topic><topic>International conferences</topic><topic>Medical diagnosis</topic><topic>Melanoma</topic><topic>Methods</topic><topic>Microscopy</topic><topic>Neurosciences</topic><topic>Optimization</topic><topic>Other</topic><topic>Pattern recognition</topic><topic>Researchers</topic><topic>Robustness</topic><topic>Saliency</topic><topic>Skin cancer</topic><topic>Skin Neoplasms - diagnostic imaging</topic><topic>State of the art</topic><topic>Threshold</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Haidi</creatorcontrib><creatorcontrib>Xie, Fengying</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Jiang, Zhiguo</creatorcontrib><creatorcontrib>Liu, Jie</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Haidi</au><au>Xie, Fengying</au><au>Li, Yang</au><au>Jiang, Zhiguo</au><au>Liu, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic Segmentation of Dermoscopy Images using Saliency Combined with Otsu Threshold</atitle><jtitle>Computers in biology and medicine</jtitle><addtitle>Comput Biol Med</addtitle><date>2017-06-01</date><risdate>2017</risdate><volume>85</volume><spage>75</spage><epage>85</epage><pages>75-85</pages><issn>0010-4825</issn><eissn>1879-0534</eissn><abstract>Abstract Segmentation is one of the crucial steps for the computer-aided diagnosis (CAD) of skin cancer with dermoscopy images. To accurately extract lesion borders from dermoscopy images, a novel automatic segmentation algorithm using saliency combined with Otsu threshold is proposed in this paper, which includes enhancement and segmentation stages. In the enhancement stage, prior information on healthy skin is extracted, and the color saliency map and brightness saliency map are constructed respectively. By fusing the two saliency maps, the final enhanced image is obtained. In the segmentation stage, according to the histogram distribution of the enhanced image, an optimization function is designed to adjust the traditional Otsu threshold method to obtain more accurate lesion borders. The proposed model is validated from enhancement effectiveness and segmentation accuracy. Experimental results demonstrate that our method is robust and performs better than other state-of-the-art methods.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>28460258</pmid><doi>10.1016/j.compbiomed.2017.03.025</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-4825
ispartof Computers in biology and medicine, 2017-06, Vol.85, p.75-85
issn 0010-4825
1879-0534
language eng
recordid cdi_proquest_miscellaneous_1894519582
source MEDLINE; Access via ScienceDirect (Elsevier); ProQuest Central UK/Ireland
subjects Accuracy
Algorithms
Automatic segmentation
Automation
Borders
Brightness
CAD
Cancer
Cluster Analysis
Color
Computer aided design
Computer-aided diagnosis
Databases, Factual
Dermatology
Dermoscopy - methods
Dermoscopy images
Diagnosis
Genetic algorithms
Humans
Image Interpretation, Computer-Assisted - methods
Image processing
Image segmentation
Internal Medicine
International conferences
Medical diagnosis
Melanoma
Methods
Microscopy
Neurosciences
Optimization
Other
Pattern recognition
Researchers
Robustness
Saliency
Skin cancer
Skin Neoplasms - diagnostic imaging
State of the art
Threshold
title Automatic Segmentation of Dermoscopy Images using Saliency Combined with Otsu Threshold
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A10%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20Segmentation%20of%20Dermoscopy%20Images%20using%20Saliency%20Combined%20with%20Otsu%20Threshold&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Fan,%20Haidi&rft.date=2017-06-01&rft.volume=85&rft.spage=75&rft.epage=85&rft.pages=75-85&rft.issn=0010-4825&rft.eissn=1879-0534&rft_id=info:doi/10.1016/j.compbiomed.2017.03.025&rft_dat=%3Cproquest_cross%3E1904826064%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1904826064&rft_id=info:pmid/28460258&rft_els_id=S001048251730080X&rfr_iscdi=true