Patterns and regulation of silicon accumulation in Synechococcus spp
Six clones of the marine cyanobacterium Synechococcus, representing four major clades, were all found to contain significant amounts of silicon in culture. Growth rate was unaffected by silicic acid, Si(OH)4, concentration between 1 and 120 μM suggesting that Synechococcus lacks an obligate need for...
Gespeichert in:
Veröffentlicht in: | Journal of phycology 2017-08, Vol.53 (4), p.746-761 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 761 |
---|---|
container_issue | 4 |
container_start_page | 746 |
container_title | Journal of phycology |
container_volume | 53 |
creator | Brzezinski, Mark A. Krause, Jeffrey W. Baines, Stephen B. Collier, Jackie L. Ohnemus, Daniel C. Twining, Benjamin S. Posewitz, M. |
description | Six clones of the marine cyanobacterium Synechococcus, representing four major clades, were all found to contain significant amounts of silicon in culture. Growth rate was unaffected by silicic acid, Si(OH)4, concentration between 1 and 120 μM suggesting that Synechococcus lacks an obligate need for silicon (Si). Strains contained two major pools of Si: an aqueous soluble and an aqueous insoluble pool. Soluble pool sizes correspond to estimated intracellular dissolved Si concentrations of 2–24 mM, which would be thermodynamically unstable implying the binding of intracellular soluble Si to organic ligands. The Si content of all clones was inversely related to growth rate and increased with higher [Si(OH)4] in the growth medium. Accumulation rates showed a unique bilinear response to increasing [Si(OH)4] from 1 to 500 μM with the rate of Si acquisition increasing abruptly between 80 and 100 μM Si(OH)4. Although these linear responses imply some form of diffusion‐mediated transport, Si uptake rates at low Si (~1 μM Si) were inhibited by orthophosphate, suggesting a role of phosphate transporters in Si acquisition. Theoretical calculations imply that observed Si acquisition rates are too rapid to be supported by lipid‐solubility diffusion of Si through the plasmalemma; however, facilitated diffusion involving membrane protein channels may suffice. The data are used to construct a working model of the mechanisms governing the Si content and rate of Si acquisition in Synechococcus. |
doi_str_mv | 10.1111/jpy.12545 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1893967756</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1926770770</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4545-9ad21d724292f3294288b98615cc3ac8f9c367924283b0d280e7716c265a17183</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMo7rp68A9IwYseupukzddRdv1kwQX14Clk01S7tE1NWqT_3mh3PQgOAzPMPLy8vACcIjhFoWabpp8iTFKyB8aIYBFzjtg-GEOIcZzQlI7AkfcbCCGjBB2CEeYpYeE7BouValvjah-pOouceetK1Ra2jmwe-aIsdFiV1l21uxd19NTXRr9bbcPdR75pjsFBrkpvTrZzAl5urp_nd_Hy8fZ-frWMdRrMxUJlGGUMp1jgPMEixZyvBaeIaJ0ozXOhE8pE-PNkDTPMoWEMUY0pUYghnkzAxaDbOPvRGd_KqvDalKWqje28RFwkgjJGaEDP_6Ab27k6uJNI4MDA0IG6HCjtrPfO5LJxRaVcLxGU39HKEK38iTawZ1vFbl2Z7JfcZRmA2QB8FqXp_1eSD6vXQfILqGGAfQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1926770770</pqid></control><display><type>article</type><title>Patterns and regulation of silicon accumulation in Synechococcus spp</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Brzezinski, Mark A. ; Krause, Jeffrey W. ; Baines, Stephen B. ; Collier, Jackie L. ; Ohnemus, Daniel C. ; Twining, Benjamin S. ; Posewitz, M.</creator><creatorcontrib>Brzezinski, Mark A. ; Krause, Jeffrey W. ; Baines, Stephen B. ; Collier, Jackie L. ; Ohnemus, Daniel C. ; Twining, Benjamin S. ; Posewitz, M.</creatorcontrib><description>Six clones of the marine cyanobacterium Synechococcus, representing four major clades, were all found to contain significant amounts of silicon in culture. Growth rate was unaffected by silicic acid, Si(OH)4, concentration between 1 and 120 μM suggesting that Synechococcus lacks an obligate need for silicon (Si). Strains contained two major pools of Si: an aqueous soluble and an aqueous insoluble pool. Soluble pool sizes correspond to estimated intracellular dissolved Si concentrations of 2–24 mM, which would be thermodynamically unstable implying the binding of intracellular soluble Si to organic ligands. The Si content of all clones was inversely related to growth rate and increased with higher [Si(OH)4] in the growth medium. Accumulation rates showed a unique bilinear response to increasing [Si(OH)4] from 1 to 500 μM with the rate of Si acquisition increasing abruptly between 80 and 100 μM Si(OH)4. Although these linear responses imply some form of diffusion‐mediated transport, Si uptake rates at low Si (~1 μM Si) were inhibited by orthophosphate, suggesting a role of phosphate transporters in Si acquisition. Theoretical calculations imply that observed Si acquisition rates are too rapid to be supported by lipid‐solubility diffusion of Si through the plasmalemma; however, facilitated diffusion involving membrane protein channels may suffice. The data are used to construct a working model of the mechanisms governing the Si content and rate of Si acquisition in Synechococcus.</description><identifier>ISSN: 0022-3646</identifier><identifier>EISSN: 1529-8817</identifier><identifier>DOI: 10.1111/jpy.12545</identifier><identifier>PMID: 28457002</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Accumulation ; active uptake ; Clones ; cyanobacteria ; Diffusion ; Diffusion rate ; Dye dispersion ; Growth rate ; Intracellular ; intracellular Si pools ; Ligands ; Lipids ; Membrane proteins ; Orthophosphate ; Phosphates ; phytoplankton ; phytoplankton physiology ; Plasma membranes ; Proteins ; silicate ; Silicic acid ; Silicic Acid - metabolism ; Silicon ; Silicon - metabolism ; Synechococcus ; Synechococcus - growth & development ; Synechococcus - metabolism ; Uptake</subject><ispartof>Journal of phycology, 2017-08, Vol.53 (4), p.746-761</ispartof><rights>2017 Phycological Society of America</rights><rights>2017 Phycological Society of America.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4545-9ad21d724292f3294288b98615cc3ac8f9c367924283b0d280e7716c265a17183</citedby><cites>FETCH-LOGICAL-c4545-9ad21d724292f3294288b98615cc3ac8f9c367924283b0d280e7716c265a17183</cites><orcidid>0000-0001-8774-5715 ; 0000-0003-3432-2297</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjpy.12545$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjpy.12545$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28457002$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brzezinski, Mark A.</creatorcontrib><creatorcontrib>Krause, Jeffrey W.</creatorcontrib><creatorcontrib>Baines, Stephen B.</creatorcontrib><creatorcontrib>Collier, Jackie L.</creatorcontrib><creatorcontrib>Ohnemus, Daniel C.</creatorcontrib><creatorcontrib>Twining, Benjamin S.</creatorcontrib><creatorcontrib>Posewitz, M.</creatorcontrib><title>Patterns and regulation of silicon accumulation in Synechococcus spp</title><title>Journal of phycology</title><addtitle>J Phycol</addtitle><description>Six clones of the marine cyanobacterium Synechococcus, representing four major clades, were all found to contain significant amounts of silicon in culture. Growth rate was unaffected by silicic acid, Si(OH)4, concentration between 1 and 120 μM suggesting that Synechococcus lacks an obligate need for silicon (Si). Strains contained two major pools of Si: an aqueous soluble and an aqueous insoluble pool. Soluble pool sizes correspond to estimated intracellular dissolved Si concentrations of 2–24 mM, which would be thermodynamically unstable implying the binding of intracellular soluble Si to organic ligands. The Si content of all clones was inversely related to growth rate and increased with higher [Si(OH)4] in the growth medium. Accumulation rates showed a unique bilinear response to increasing [Si(OH)4] from 1 to 500 μM with the rate of Si acquisition increasing abruptly between 80 and 100 μM Si(OH)4. Although these linear responses imply some form of diffusion‐mediated transport, Si uptake rates at low Si (~1 μM Si) were inhibited by orthophosphate, suggesting a role of phosphate transporters in Si acquisition. Theoretical calculations imply that observed Si acquisition rates are too rapid to be supported by lipid‐solubility diffusion of Si through the plasmalemma; however, facilitated diffusion involving membrane protein channels may suffice. The data are used to construct a working model of the mechanisms governing the Si content and rate of Si acquisition in Synechococcus.</description><subject>Accumulation</subject><subject>active uptake</subject><subject>Clones</subject><subject>cyanobacteria</subject><subject>Diffusion</subject><subject>Diffusion rate</subject><subject>Dye dispersion</subject><subject>Growth rate</subject><subject>Intracellular</subject><subject>intracellular Si pools</subject><subject>Ligands</subject><subject>Lipids</subject><subject>Membrane proteins</subject><subject>Orthophosphate</subject><subject>Phosphates</subject><subject>phytoplankton</subject><subject>phytoplankton physiology</subject><subject>Plasma membranes</subject><subject>Proteins</subject><subject>silicate</subject><subject>Silicic acid</subject><subject>Silicic Acid - metabolism</subject><subject>Silicon</subject><subject>Silicon - metabolism</subject><subject>Synechococcus</subject><subject>Synechococcus - growth & development</subject><subject>Synechococcus - metabolism</subject><subject>Uptake</subject><issn>0022-3646</issn><issn>1529-8817</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kE1LxDAQhoMo7rp68A9IwYseupukzddRdv1kwQX14Clk01S7tE1NWqT_3mh3PQgOAzPMPLy8vACcIjhFoWabpp8iTFKyB8aIYBFzjtg-GEOIcZzQlI7AkfcbCCGjBB2CEeYpYeE7BouValvjah-pOouceetK1Ra2jmwe-aIsdFiV1l21uxd19NTXRr9bbcPdR75pjsFBrkpvTrZzAl5urp_nd_Hy8fZ-frWMdRrMxUJlGGUMp1jgPMEixZyvBaeIaJ0ozXOhE8pE-PNkDTPMoWEMUY0pUYghnkzAxaDbOPvRGd_KqvDalKWqje28RFwkgjJGaEDP_6Ab27k6uJNI4MDA0IG6HCjtrPfO5LJxRaVcLxGU39HKEK38iTawZ1vFbl2Z7JfcZRmA2QB8FqXp_1eSD6vXQfILqGGAfQ</recordid><startdate>201708</startdate><enddate>201708</enddate><creator>Brzezinski, Mark A.</creator><creator>Krause, Jeffrey W.</creator><creator>Baines, Stephen B.</creator><creator>Collier, Jackie L.</creator><creator>Ohnemus, Daniel C.</creator><creator>Twining, Benjamin S.</creator><creator>Posewitz, M.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8774-5715</orcidid><orcidid>https://orcid.org/0000-0003-3432-2297</orcidid></search><sort><creationdate>201708</creationdate><title>Patterns and regulation of silicon accumulation in Synechococcus spp</title><author>Brzezinski, Mark A. ; Krause, Jeffrey W. ; Baines, Stephen B. ; Collier, Jackie L. ; Ohnemus, Daniel C. ; Twining, Benjamin S. ; Posewitz, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4545-9ad21d724292f3294288b98615cc3ac8f9c367924283b0d280e7716c265a17183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Accumulation</topic><topic>active uptake</topic><topic>Clones</topic><topic>cyanobacteria</topic><topic>Diffusion</topic><topic>Diffusion rate</topic><topic>Dye dispersion</topic><topic>Growth rate</topic><topic>Intracellular</topic><topic>intracellular Si pools</topic><topic>Ligands</topic><topic>Lipids</topic><topic>Membrane proteins</topic><topic>Orthophosphate</topic><topic>Phosphates</topic><topic>phytoplankton</topic><topic>phytoplankton physiology</topic><topic>Plasma membranes</topic><topic>Proteins</topic><topic>silicate</topic><topic>Silicic acid</topic><topic>Silicic Acid - metabolism</topic><topic>Silicon</topic><topic>Silicon - metabolism</topic><topic>Synechococcus</topic><topic>Synechococcus - growth & development</topic><topic>Synechococcus - metabolism</topic><topic>Uptake</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brzezinski, Mark A.</creatorcontrib><creatorcontrib>Krause, Jeffrey W.</creatorcontrib><creatorcontrib>Baines, Stephen B.</creatorcontrib><creatorcontrib>Collier, Jackie L.</creatorcontrib><creatorcontrib>Ohnemus, Daniel C.</creatorcontrib><creatorcontrib>Twining, Benjamin S.</creatorcontrib><creatorcontrib>Posewitz, M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of phycology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brzezinski, Mark A.</au><au>Krause, Jeffrey W.</au><au>Baines, Stephen B.</au><au>Collier, Jackie L.</au><au>Ohnemus, Daniel C.</au><au>Twining, Benjamin S.</au><au>Posewitz, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Patterns and regulation of silicon accumulation in Synechococcus spp</atitle><jtitle>Journal of phycology</jtitle><addtitle>J Phycol</addtitle><date>2017-08</date><risdate>2017</risdate><volume>53</volume><issue>4</issue><spage>746</spage><epage>761</epage><pages>746-761</pages><issn>0022-3646</issn><eissn>1529-8817</eissn><abstract>Six clones of the marine cyanobacterium Synechococcus, representing four major clades, were all found to contain significant amounts of silicon in culture. Growth rate was unaffected by silicic acid, Si(OH)4, concentration between 1 and 120 μM suggesting that Synechococcus lacks an obligate need for silicon (Si). Strains contained two major pools of Si: an aqueous soluble and an aqueous insoluble pool. Soluble pool sizes correspond to estimated intracellular dissolved Si concentrations of 2–24 mM, which would be thermodynamically unstable implying the binding of intracellular soluble Si to organic ligands. The Si content of all clones was inversely related to growth rate and increased with higher [Si(OH)4] in the growth medium. Accumulation rates showed a unique bilinear response to increasing [Si(OH)4] from 1 to 500 μM with the rate of Si acquisition increasing abruptly between 80 and 100 μM Si(OH)4. Although these linear responses imply some form of diffusion‐mediated transport, Si uptake rates at low Si (~1 μM Si) were inhibited by orthophosphate, suggesting a role of phosphate transporters in Si acquisition. Theoretical calculations imply that observed Si acquisition rates are too rapid to be supported by lipid‐solubility diffusion of Si through the plasmalemma; however, facilitated diffusion involving membrane protein channels may suffice. The data are used to construct a working model of the mechanisms governing the Si content and rate of Si acquisition in Synechococcus.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28457002</pmid><doi>10.1111/jpy.12545</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-8774-5715</orcidid><orcidid>https://orcid.org/0000-0003-3432-2297</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3646 |
ispartof | Journal of phycology, 2017-08, Vol.53 (4), p.746-761 |
issn | 0022-3646 1529-8817 |
language | eng |
recordid | cdi_proquest_miscellaneous_1893967756 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Accumulation active uptake Clones cyanobacteria Diffusion Diffusion rate Dye dispersion Growth rate Intracellular intracellular Si pools Ligands Lipids Membrane proteins Orthophosphate Phosphates phytoplankton phytoplankton physiology Plasma membranes Proteins silicate Silicic acid Silicic Acid - metabolism Silicon Silicon - metabolism Synechococcus Synechococcus - growth & development Synechococcus - metabolism Uptake |
title | Patterns and regulation of silicon accumulation in Synechococcus spp |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T00%3A19%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Patterns%20and%20regulation%20of%20silicon%20accumulation%20in%20Synechococcus%20spp&rft.jtitle=Journal%20of%20phycology&rft.au=Brzezinski,%20Mark%20A.&rft.date=2017-08&rft.volume=53&rft.issue=4&rft.spage=746&rft.epage=761&rft.pages=746-761&rft.issn=0022-3646&rft.eissn=1529-8817&rft_id=info:doi/10.1111/jpy.12545&rft_dat=%3Cproquest_cross%3E1926770770%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1926770770&rft_id=info:pmid/28457002&rfr_iscdi=true |