Transformation of fatty acids catalyzed by cytochrome P450 monooxygenase enzymes of Candida tropicalis

Candida tropicalis ATCC 20336 can grow on fatty acids or alkanes as its sole source of carbon and energy, but strains blocked in beta-oxidation convert these substrates to long-chain alpha,omega-dicarboxylic acids (diacids), compounds of potential commercial value (Picataggio et al., Biotechnology 1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied and Environmental Microbiology 2003-10, Vol.69 (10), p.5992-5999
Hauptverfasser: Eschenfeldt, W.H, Zhang, Y, Samaha, H, Stols, L, Eirich, L.D, Wilson, C.R, Donnelly, M.I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5999
container_issue 10
container_start_page 5992
container_title Applied and Environmental Microbiology
container_volume 69
creator Eschenfeldt, W.H
Zhang, Y
Samaha, H
Stols, L
Eirich, L.D
Wilson, C.R
Donnelly, M.I
description Candida tropicalis ATCC 20336 can grow on fatty acids or alkanes as its sole source of carbon and energy, but strains blocked in beta-oxidation convert these substrates to long-chain alpha,omega-dicarboxylic acids (diacids), compounds of potential commercial value (Picataggio et al., Biotechnology 10:894-898, 1992). The initial step in the formation of these diacids, which is thought to be rate limiting, is omega-hydroxylation by a cytochrome P450 (CYP) monooxygenase. C. tropicalis ATCC 20336 contains a family of CYP genes, and when ATCC 20336 or its derivatives are exposed to oleic acid (C18:1), two cytochrome P450s, CYP52A13 and CYP52A17, are consistently strongly induced (Craft et al., this issue). To determine the relative activity of each of these enzymes and their contribution to diacid formation, both cytochrome P450s were expressed separately in insect cells in conjunction with the C. tropicalis cytochrome P450 reductase (NCP). Microsomes prepared from these cells were analyzed for their ability to oxidize fatty acids. CYP52A13 preferentially oxidized oleic acid and other unsaturated acids to omega-hydroxy acids. CYP52A17 also oxidized oleic acid efficiently but converted shorter, saturated fatty acids such as myristic acid (C14:0) much more effectively. Both enzymes, in particular CYP52A17, also oxidized omega-hydroxy fatty acids, ultimately generating the alpha,omega-diacid. Consideration of these different specificities and selectivities will help determine which enzymes to amplify in strains blocked for beta-oxidation to enhance the production of dicarboxylic acids. The activity spectrum also identified other potential oxidation targets for commercial development.
doi_str_mv 10.1128/AEM.69.10.5992-5999.2003
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_18939501</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>704653331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c635t-feb1025705b1466cec3679f2b7b110af3ff97a68b12790b4b133caec234bc6b03</originalsourceid><addsrcrecordid>eNqFkl2PEyEUhidG49bVv6Cjid5NPcDADBdebJr1I1mjibvXBCi0bGagAlVnf71M2tjVG28OOeE5H7y8VVUjWCKE-7cXl5-XjC9LSjnHTQl8iQHIg2qBgPcNJYQ9rBYAnDcYt3BWPUnpFgBaYP3j6gy1lGCg7aKy11H6ZEMcZXbB18HWVuY81VK7daq1zHKY7sy6VlOtpxz0NobR1F9bCvUYfAi_po3xMpna-LtpNGnusJJ-7dayzjHsnJaDS0-rR1YOyTw7nufVzfvL69XH5urLh0-ri6tGM0JzY41CgGkHVKGWMW00YR23WHUKIZCWWMs7yXqFcMdBtQoRoqXRmLRKMwXkvHp36Lvbq9GstfE5ykHsohtlnESQTvx9491WbMIPgQFhYKX-5aE-pOxE0i4bvdXBe6Oz4KyIywvz5jgjhu97k7IYXdJmGKQ3YZ9ERzvKCJD_gqjnhFNABXz1D3gb9tEXocpelLPSEBeoP0A6hpSisX9ehUDMrhDFFYLxOZ1dMQcuZleU0uf3VTkVHm1QgNdHQKbyX7Z4Qrt04ijilNH-tOjWbbY_XTRCplFIM96bW6AXB8jKIOQmlkY334q-pNixZbwo8xvG0dYN</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>205965752</pqid></control><display><type>article</type><title>Transformation of fatty acids catalyzed by cytochrome P450 monooxygenase enzymes of Candida tropicalis</title><source>American Society for Microbiology</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Eschenfeldt, W.H ; Zhang, Y ; Samaha, H ; Stols, L ; Eirich, L.D ; Wilson, C.R ; Donnelly, M.I</creator><creatorcontrib>Eschenfeldt, W.H ; Zhang, Y ; Samaha, H ; Stols, L ; Eirich, L.D ; Wilson, C.R ; Donnelly, M.I ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Candida tropicalis ATCC 20336 can grow on fatty acids or alkanes as its sole source of carbon and energy, but strains blocked in beta-oxidation convert these substrates to long-chain alpha,omega-dicarboxylic acids (diacids), compounds of potential commercial value (Picataggio et al., Biotechnology 10:894-898, 1992). The initial step in the formation of these diacids, which is thought to be rate limiting, is omega-hydroxylation by a cytochrome P450 (CYP) monooxygenase. C. tropicalis ATCC 20336 contains a family of CYP genes, and when ATCC 20336 or its derivatives are exposed to oleic acid (C18:1), two cytochrome P450s, CYP52A13 and CYP52A17, are consistently strongly induced (Craft et al., this issue). To determine the relative activity of each of these enzymes and their contribution to diacid formation, both cytochrome P450s were expressed separately in insect cells in conjunction with the C. tropicalis cytochrome P450 reductase (NCP). Microsomes prepared from these cells were analyzed for their ability to oxidize fatty acids. CYP52A13 preferentially oxidized oleic acid and other unsaturated acids to omega-hydroxy acids. CYP52A17 also oxidized oleic acid efficiently but converted shorter, saturated fatty acids such as myristic acid (C14:0) much more effectively. Both enzymes, in particular CYP52A17, also oxidized omega-hydroxy fatty acids, ultimately generating the alpha,omega-diacid. Consideration of these different specificities and selectivities will help determine which enzymes to amplify in strains blocked for beta-oxidation to enhance the production of dicarboxylic acids. The activity spectrum also identified other potential oxidation targets for commercial development.</description><identifier>ISSN: 0099-2240</identifier><identifier>EISSN: 1098-5336</identifier><identifier>DOI: 10.1128/AEM.69.10.5992-5999.2003</identifier><identifier>PMID: 14532054</identifier><identifier>CODEN: AEMIDF</identifier><language>eng</language><publisher>Washington, DC: American Society for Microbiology</publisher><subject>a,^w-dicarboxylic acids ; alkanes ; Amino Acid Sequence ; Animals ; Baculoviridae - genetics ; BASIC BIOLOGICAL SCIENCES ; Biological and medical sciences ; CANDIDA ; Candida tropicalis ; Candida tropicalis - enzymology ; Candida tropicalis - genetics ; Carbon ; CARBOXYLIC ACIDS ; cell lines ; Cells, Cultured ; cytochrome P-450 ; Cytochrome P-450 Enzyme System - genetics ; Cytochrome P-450 Enzyme System - metabolism ; cytochrome P450 ; cytochrome P450 monooxygenase ; CYTOCHROMES ; enzyme activity ; ENZYMES ; Fatty acids ; Fatty Acids - metabolism ; Fundamental and applied biological sciences. Psychology ; Fungi ; gene expression ; GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE ; genes ; Genetic Vectors ; Microbiology ; microsomes ; Microsomes - enzymology ; molecular cloning ; myristic acid ; Myristic Acid - metabolism ; NADPH-Ferrihemoprotein Reductase - genetics ; NADPH-Ferrihemoprotein Reductase - metabolism ; oleic acid ; Oleic Acid - metabolism ; Oxidation ; Peptides - chemistry ; Physiology and Biotechnology ; recombinant proteins ; saturated fatty acids ; Spodoptera ; Spodoptera frugiperda ; Substrates ; TRANSFORMATIONS ; transgenic insects ; unsaturated fatty acids ; unspecific monooxygenase ; w-hydroxy acids</subject><ispartof>Applied and Environmental Microbiology, 2003-10, Vol.69 (10), p.5992-5999</ispartof><rights>2004 INIST-CNRS</rights><rights>Copyright American Society for Microbiology Oct 2003</rights><rights>Copyright © 2003, American Society for Microbiology 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c635t-feb1025705b1466cec3679f2b7b110af3ff97a68b12790b4b133caec234bc6b03</citedby><cites>FETCH-LOGICAL-c635t-feb1025705b1466cec3679f2b7b110af3ff97a68b12790b4b133caec234bc6b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC201206/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC201206/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,3175,3176,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15195658$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14532054$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/961099$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Eschenfeldt, W.H</creatorcontrib><creatorcontrib>Zhang, Y</creatorcontrib><creatorcontrib>Samaha, H</creatorcontrib><creatorcontrib>Stols, L</creatorcontrib><creatorcontrib>Eirich, L.D</creatorcontrib><creatorcontrib>Wilson, C.R</creatorcontrib><creatorcontrib>Donnelly, M.I</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Transformation of fatty acids catalyzed by cytochrome P450 monooxygenase enzymes of Candida tropicalis</title><title>Applied and Environmental Microbiology</title><addtitle>Appl Environ Microbiol</addtitle><description>Candida tropicalis ATCC 20336 can grow on fatty acids or alkanes as its sole source of carbon and energy, but strains blocked in beta-oxidation convert these substrates to long-chain alpha,omega-dicarboxylic acids (diacids), compounds of potential commercial value (Picataggio et al., Biotechnology 10:894-898, 1992). The initial step in the formation of these diacids, which is thought to be rate limiting, is omega-hydroxylation by a cytochrome P450 (CYP) monooxygenase. C. tropicalis ATCC 20336 contains a family of CYP genes, and when ATCC 20336 or its derivatives are exposed to oleic acid (C18:1), two cytochrome P450s, CYP52A13 and CYP52A17, are consistently strongly induced (Craft et al., this issue). To determine the relative activity of each of these enzymes and their contribution to diacid formation, both cytochrome P450s were expressed separately in insect cells in conjunction with the C. tropicalis cytochrome P450 reductase (NCP). Microsomes prepared from these cells were analyzed for their ability to oxidize fatty acids. CYP52A13 preferentially oxidized oleic acid and other unsaturated acids to omega-hydroxy acids. CYP52A17 also oxidized oleic acid efficiently but converted shorter, saturated fatty acids such as myristic acid (C14:0) much more effectively. Both enzymes, in particular CYP52A17, also oxidized omega-hydroxy fatty acids, ultimately generating the alpha,omega-diacid. Consideration of these different specificities and selectivities will help determine which enzymes to amplify in strains blocked for beta-oxidation to enhance the production of dicarboxylic acids. The activity spectrum also identified other potential oxidation targets for commercial development.</description><subject>a,^w-dicarboxylic acids</subject><subject>alkanes</subject><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Baculoviridae - genetics</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biological and medical sciences</subject><subject>CANDIDA</subject><subject>Candida tropicalis</subject><subject>Candida tropicalis - enzymology</subject><subject>Candida tropicalis - genetics</subject><subject>Carbon</subject><subject>CARBOXYLIC ACIDS</subject><subject>cell lines</subject><subject>Cells, Cultured</subject><subject>cytochrome P-450</subject><subject>Cytochrome P-450 Enzyme System - genetics</subject><subject>Cytochrome P-450 Enzyme System - metabolism</subject><subject>cytochrome P450</subject><subject>cytochrome P450 monooxygenase</subject><subject>CYTOCHROMES</subject><subject>enzyme activity</subject><subject>ENZYMES</subject><subject>Fatty acids</subject><subject>Fatty Acids - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Fungi</subject><subject>gene expression</subject><subject>GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</subject><subject>genes</subject><subject>Genetic Vectors</subject><subject>Microbiology</subject><subject>microsomes</subject><subject>Microsomes - enzymology</subject><subject>molecular cloning</subject><subject>myristic acid</subject><subject>Myristic Acid - metabolism</subject><subject>NADPH-Ferrihemoprotein Reductase - genetics</subject><subject>NADPH-Ferrihemoprotein Reductase - metabolism</subject><subject>oleic acid</subject><subject>Oleic Acid - metabolism</subject><subject>Oxidation</subject><subject>Peptides - chemistry</subject><subject>Physiology and Biotechnology</subject><subject>recombinant proteins</subject><subject>saturated fatty acids</subject><subject>Spodoptera</subject><subject>Spodoptera frugiperda</subject><subject>Substrates</subject><subject>TRANSFORMATIONS</subject><subject>transgenic insects</subject><subject>unsaturated fatty acids</subject><subject>unspecific monooxygenase</subject><subject>w-hydroxy acids</subject><issn>0099-2240</issn><issn>1098-5336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkl2PEyEUhidG49bVv6Cjid5NPcDADBdebJr1I1mjibvXBCi0bGagAlVnf71M2tjVG28OOeE5H7y8VVUjWCKE-7cXl5-XjC9LSjnHTQl8iQHIg2qBgPcNJYQ9rBYAnDcYt3BWPUnpFgBaYP3j6gy1lGCg7aKy11H6ZEMcZXbB18HWVuY81VK7daq1zHKY7sy6VlOtpxz0NobR1F9bCvUYfAi_po3xMpna-LtpNGnusJJ-7dayzjHsnJaDS0-rR1YOyTw7nufVzfvL69XH5urLh0-ri6tGM0JzY41CgGkHVKGWMW00YR23WHUKIZCWWMs7yXqFcMdBtQoRoqXRmLRKMwXkvHp36Lvbq9GstfE5ykHsohtlnESQTvx9491WbMIPgQFhYKX-5aE-pOxE0i4bvdXBe6Oz4KyIywvz5jgjhu97k7IYXdJmGKQ3YZ9ERzvKCJD_gqjnhFNABXz1D3gb9tEXocpelLPSEBeoP0A6hpSisX9ehUDMrhDFFYLxOZ1dMQcuZleU0uf3VTkVHm1QgNdHQKbyX7Z4Qrt04ijilNH-tOjWbbY_XTRCplFIM96bW6AXB8jKIOQmlkY334q-pNixZbwo8xvG0dYN</recordid><startdate>20031001</startdate><enddate>20031001</enddate><creator>Eschenfeldt, W.H</creator><creator>Zhang, Y</creator><creator>Samaha, H</creator><creator>Stols, L</creator><creator>Eirich, L.D</creator><creator>Wilson, C.R</creator><creator>Donnelly, M.I</creator><general>American Society for Microbiology</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20031001</creationdate><title>Transformation of fatty acids catalyzed by cytochrome P450 monooxygenase enzymes of Candida tropicalis</title><author>Eschenfeldt, W.H ; Zhang, Y ; Samaha, H ; Stols, L ; Eirich, L.D ; Wilson, C.R ; Donnelly, M.I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c635t-feb1025705b1466cec3679f2b7b110af3ff97a68b12790b4b133caec234bc6b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>a,^w-dicarboxylic acids</topic><topic>alkanes</topic><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Baculoviridae - genetics</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biological and medical sciences</topic><topic>CANDIDA</topic><topic>Candida tropicalis</topic><topic>Candida tropicalis - enzymology</topic><topic>Candida tropicalis - genetics</topic><topic>Carbon</topic><topic>CARBOXYLIC ACIDS</topic><topic>cell lines</topic><topic>Cells, Cultured</topic><topic>cytochrome P-450</topic><topic>Cytochrome P-450 Enzyme System - genetics</topic><topic>Cytochrome P-450 Enzyme System - metabolism</topic><topic>cytochrome P450</topic><topic>cytochrome P450 monooxygenase</topic><topic>CYTOCHROMES</topic><topic>enzyme activity</topic><topic>ENZYMES</topic><topic>Fatty acids</topic><topic>Fatty Acids - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Fungi</topic><topic>gene expression</topic><topic>GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</topic><topic>genes</topic><topic>Genetic Vectors</topic><topic>Microbiology</topic><topic>microsomes</topic><topic>Microsomes - enzymology</topic><topic>molecular cloning</topic><topic>myristic acid</topic><topic>Myristic Acid - metabolism</topic><topic>NADPH-Ferrihemoprotein Reductase - genetics</topic><topic>NADPH-Ferrihemoprotein Reductase - metabolism</topic><topic>oleic acid</topic><topic>Oleic Acid - metabolism</topic><topic>Oxidation</topic><topic>Peptides - chemistry</topic><topic>Physiology and Biotechnology</topic><topic>recombinant proteins</topic><topic>saturated fatty acids</topic><topic>Spodoptera</topic><topic>Spodoptera frugiperda</topic><topic>Substrates</topic><topic>TRANSFORMATIONS</topic><topic>transgenic insects</topic><topic>unsaturated fatty acids</topic><topic>unspecific monooxygenase</topic><topic>w-hydroxy acids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eschenfeldt, W.H</creatorcontrib><creatorcontrib>Zhang, Y</creatorcontrib><creatorcontrib>Samaha, H</creatorcontrib><creatorcontrib>Stols, L</creatorcontrib><creatorcontrib>Eirich, L.D</creatorcontrib><creatorcontrib>Wilson, C.R</creatorcontrib><creatorcontrib>Donnelly, M.I</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied and Environmental Microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eschenfeldt, W.H</au><au>Zhang, Y</au><au>Samaha, H</au><au>Stols, L</au><au>Eirich, L.D</au><au>Wilson, C.R</au><au>Donnelly, M.I</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transformation of fatty acids catalyzed by cytochrome P450 monooxygenase enzymes of Candida tropicalis</atitle><jtitle>Applied and Environmental Microbiology</jtitle><addtitle>Appl Environ Microbiol</addtitle><date>2003-10-01</date><risdate>2003</risdate><volume>69</volume><issue>10</issue><spage>5992</spage><epage>5999</epage><pages>5992-5999</pages><issn>0099-2240</issn><eissn>1098-5336</eissn><coden>AEMIDF</coden><abstract>Candida tropicalis ATCC 20336 can grow on fatty acids or alkanes as its sole source of carbon and energy, but strains blocked in beta-oxidation convert these substrates to long-chain alpha,omega-dicarboxylic acids (diacids), compounds of potential commercial value (Picataggio et al., Biotechnology 10:894-898, 1992). The initial step in the formation of these diacids, which is thought to be rate limiting, is omega-hydroxylation by a cytochrome P450 (CYP) monooxygenase. C. tropicalis ATCC 20336 contains a family of CYP genes, and when ATCC 20336 or its derivatives are exposed to oleic acid (C18:1), two cytochrome P450s, CYP52A13 and CYP52A17, are consistently strongly induced (Craft et al., this issue). To determine the relative activity of each of these enzymes and their contribution to diacid formation, both cytochrome P450s were expressed separately in insect cells in conjunction with the C. tropicalis cytochrome P450 reductase (NCP). Microsomes prepared from these cells were analyzed for their ability to oxidize fatty acids. CYP52A13 preferentially oxidized oleic acid and other unsaturated acids to omega-hydroxy acids. CYP52A17 also oxidized oleic acid efficiently but converted shorter, saturated fatty acids such as myristic acid (C14:0) much more effectively. Both enzymes, in particular CYP52A17, also oxidized omega-hydroxy fatty acids, ultimately generating the alpha,omega-diacid. Consideration of these different specificities and selectivities will help determine which enzymes to amplify in strains blocked for beta-oxidation to enhance the production of dicarboxylic acids. The activity spectrum also identified other potential oxidation targets for commercial development.</abstract><cop>Washington, DC</cop><pub>American Society for Microbiology</pub><pmid>14532054</pmid><doi>10.1128/AEM.69.10.5992-5999.2003</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0099-2240
ispartof Applied and Environmental Microbiology, 2003-10, Vol.69 (10), p.5992-5999
issn 0099-2240
1098-5336
language eng
recordid cdi_proquest_miscellaneous_18939501
source American Society for Microbiology; MEDLINE; PubMed Central; Alma/SFX Local Collection
subjects a,^w-dicarboxylic acids
alkanes
Amino Acid Sequence
Animals
Baculoviridae - genetics
BASIC BIOLOGICAL SCIENCES
Biological and medical sciences
CANDIDA
Candida tropicalis
Candida tropicalis - enzymology
Candida tropicalis - genetics
Carbon
CARBOXYLIC ACIDS
cell lines
Cells, Cultured
cytochrome P-450
Cytochrome P-450 Enzyme System - genetics
Cytochrome P-450 Enzyme System - metabolism
cytochrome P450
cytochrome P450 monooxygenase
CYTOCHROMES
enzyme activity
ENZYMES
Fatty acids
Fatty Acids - metabolism
Fundamental and applied biological sciences. Psychology
Fungi
gene expression
GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE
genes
Genetic Vectors
Microbiology
microsomes
Microsomes - enzymology
molecular cloning
myristic acid
Myristic Acid - metabolism
NADPH-Ferrihemoprotein Reductase - genetics
NADPH-Ferrihemoprotein Reductase - metabolism
oleic acid
Oleic Acid - metabolism
Oxidation
Peptides - chemistry
Physiology and Biotechnology
recombinant proteins
saturated fatty acids
Spodoptera
Spodoptera frugiperda
Substrates
TRANSFORMATIONS
transgenic insects
unsaturated fatty acids
unspecific monooxygenase
w-hydroxy acids
title Transformation of fatty acids catalyzed by cytochrome P450 monooxygenase enzymes of Candida tropicalis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T02%3A26%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transformation%20of%20fatty%20acids%20catalyzed%20by%20cytochrome%20P450%20monooxygenase%20enzymes%20of%20Candida%20tropicalis&rft.jtitle=Applied%20and%20Environmental%20Microbiology&rft.au=Eschenfeldt,%20W.H&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2003-10-01&rft.volume=69&rft.issue=10&rft.spage=5992&rft.epage=5999&rft.pages=5992-5999&rft.issn=0099-2240&rft.eissn=1098-5336&rft.coden=AEMIDF&rft_id=info:doi/10.1128/AEM.69.10.5992-5999.2003&rft_dat=%3Cproquest_pasca%3E704653331%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=205965752&rft_id=info:pmid/14532054&rfr_iscdi=true