Transformation of fatty acids catalyzed by cytochrome P450 monooxygenase enzymes of Candida tropicalis
Candida tropicalis ATCC 20336 can grow on fatty acids or alkanes as its sole source of carbon and energy, but strains blocked in beta-oxidation convert these substrates to long-chain alpha,omega-dicarboxylic acids (diacids), compounds of potential commercial value (Picataggio et al., Biotechnology 1...
Gespeichert in:
Veröffentlicht in: | Applied and Environmental Microbiology 2003-10, Vol.69 (10), p.5992-5999 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5999 |
---|---|
container_issue | 10 |
container_start_page | 5992 |
container_title | Applied and Environmental Microbiology |
container_volume | 69 |
creator | Eschenfeldt, W.H Zhang, Y Samaha, H Stols, L Eirich, L.D Wilson, C.R Donnelly, M.I |
description | Candida tropicalis ATCC 20336 can grow on fatty acids or alkanes as its sole source of carbon and energy, but strains blocked in beta-oxidation convert these substrates to long-chain alpha,omega-dicarboxylic acids (diacids), compounds of potential commercial value (Picataggio et al., Biotechnology 10:894-898, 1992). The initial step in the formation of these diacids, which is thought to be rate limiting, is omega-hydroxylation by a cytochrome P450 (CYP) monooxygenase. C. tropicalis ATCC 20336 contains a family of CYP genes, and when ATCC 20336 or its derivatives are exposed to oleic acid (C18:1), two cytochrome P450s, CYP52A13 and CYP52A17, are consistently strongly induced (Craft et al., this issue). To determine the relative activity of each of these enzymes and their contribution to diacid formation, both cytochrome P450s were expressed separately in insect cells in conjunction with the C. tropicalis cytochrome P450 reductase (NCP). Microsomes prepared from these cells were analyzed for their ability to oxidize fatty acids. CYP52A13 preferentially oxidized oleic acid and other unsaturated acids to omega-hydroxy acids. CYP52A17 also oxidized oleic acid efficiently but converted shorter, saturated fatty acids such as myristic acid (C14:0) much more effectively. Both enzymes, in particular CYP52A17, also oxidized omega-hydroxy fatty acids, ultimately generating the alpha,omega-diacid. Consideration of these different specificities and selectivities will help determine which enzymes to amplify in strains blocked for beta-oxidation to enhance the production of dicarboxylic acids. The activity spectrum also identified other potential oxidation targets for commercial development. |
doi_str_mv | 10.1128/AEM.69.10.5992-5999.2003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_18939501</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>704653331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c635t-feb1025705b1466cec3679f2b7b110af3ff97a68b12790b4b133caec234bc6b03</originalsourceid><addsrcrecordid>eNqFkl2PEyEUhidG49bVv6Cjid5NPcDADBdebJr1I1mjibvXBCi0bGagAlVnf71M2tjVG28OOeE5H7y8VVUjWCKE-7cXl5-XjC9LSjnHTQl8iQHIg2qBgPcNJYQ9rBYAnDcYt3BWPUnpFgBaYP3j6gy1lGCg7aKy11H6ZEMcZXbB18HWVuY81VK7daq1zHKY7sy6VlOtpxz0NobR1F9bCvUYfAi_po3xMpna-LtpNGnusJJ-7dayzjHsnJaDS0-rR1YOyTw7nufVzfvL69XH5urLh0-ri6tGM0JzY41CgGkHVKGWMW00YR23WHUKIZCWWMs7yXqFcMdBtQoRoqXRmLRKMwXkvHp36Lvbq9GstfE5ykHsohtlnESQTvx9491WbMIPgQFhYKX-5aE-pOxE0i4bvdXBe6Oz4KyIywvz5jgjhu97k7IYXdJmGKQ3YZ9ERzvKCJD_gqjnhFNABXz1D3gb9tEXocpelLPSEBeoP0A6hpSisX9ehUDMrhDFFYLxOZ1dMQcuZleU0uf3VTkVHm1QgNdHQKbyX7Z4Qrt04ijilNH-tOjWbbY_XTRCplFIM96bW6AXB8jKIOQmlkY334q-pNixZbwo8xvG0dYN</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>205965752</pqid></control><display><type>article</type><title>Transformation of fatty acids catalyzed by cytochrome P450 monooxygenase enzymes of Candida tropicalis</title><source>American Society for Microbiology</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Eschenfeldt, W.H ; Zhang, Y ; Samaha, H ; Stols, L ; Eirich, L.D ; Wilson, C.R ; Donnelly, M.I</creator><creatorcontrib>Eschenfeldt, W.H ; Zhang, Y ; Samaha, H ; Stols, L ; Eirich, L.D ; Wilson, C.R ; Donnelly, M.I ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Candida tropicalis ATCC 20336 can grow on fatty acids or alkanes as its sole source of carbon and energy, but strains blocked in beta-oxidation convert these substrates to long-chain alpha,omega-dicarboxylic acids (diacids), compounds of potential commercial value (Picataggio et al., Biotechnology 10:894-898, 1992). The initial step in the formation of these diacids, which is thought to be rate limiting, is omega-hydroxylation by a cytochrome P450 (CYP) monooxygenase. C. tropicalis ATCC 20336 contains a family of CYP genes, and when ATCC 20336 or its derivatives are exposed to oleic acid (C18:1), two cytochrome P450s, CYP52A13 and CYP52A17, are consistently strongly induced (Craft et al., this issue). To determine the relative activity of each of these enzymes and their contribution to diacid formation, both cytochrome P450s were expressed separately in insect cells in conjunction with the C. tropicalis cytochrome P450 reductase (NCP). Microsomes prepared from these cells were analyzed for their ability to oxidize fatty acids. CYP52A13 preferentially oxidized oleic acid and other unsaturated acids to omega-hydroxy acids. CYP52A17 also oxidized oleic acid efficiently but converted shorter, saturated fatty acids such as myristic acid (C14:0) much more effectively. Both enzymes, in particular CYP52A17, also oxidized omega-hydroxy fatty acids, ultimately generating the alpha,omega-diacid. Consideration of these different specificities and selectivities will help determine which enzymes to amplify in strains blocked for beta-oxidation to enhance the production of dicarboxylic acids. The activity spectrum also identified other potential oxidation targets for commercial development.</description><identifier>ISSN: 0099-2240</identifier><identifier>EISSN: 1098-5336</identifier><identifier>DOI: 10.1128/AEM.69.10.5992-5999.2003</identifier><identifier>PMID: 14532054</identifier><identifier>CODEN: AEMIDF</identifier><language>eng</language><publisher>Washington, DC: American Society for Microbiology</publisher><subject>a,^w-dicarboxylic acids ; alkanes ; Amino Acid Sequence ; Animals ; Baculoviridae - genetics ; BASIC BIOLOGICAL SCIENCES ; Biological and medical sciences ; CANDIDA ; Candida tropicalis ; Candida tropicalis - enzymology ; Candida tropicalis - genetics ; Carbon ; CARBOXYLIC ACIDS ; cell lines ; Cells, Cultured ; cytochrome P-450 ; Cytochrome P-450 Enzyme System - genetics ; Cytochrome P-450 Enzyme System - metabolism ; cytochrome P450 ; cytochrome P450 monooxygenase ; CYTOCHROMES ; enzyme activity ; ENZYMES ; Fatty acids ; Fatty Acids - metabolism ; Fundamental and applied biological sciences. Psychology ; Fungi ; gene expression ; GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE ; genes ; Genetic Vectors ; Microbiology ; microsomes ; Microsomes - enzymology ; molecular cloning ; myristic acid ; Myristic Acid - metabolism ; NADPH-Ferrihemoprotein Reductase - genetics ; NADPH-Ferrihemoprotein Reductase - metabolism ; oleic acid ; Oleic Acid - metabolism ; Oxidation ; Peptides - chemistry ; Physiology and Biotechnology ; recombinant proteins ; saturated fatty acids ; Spodoptera ; Spodoptera frugiperda ; Substrates ; TRANSFORMATIONS ; transgenic insects ; unsaturated fatty acids ; unspecific monooxygenase ; w-hydroxy acids</subject><ispartof>Applied and Environmental Microbiology, 2003-10, Vol.69 (10), p.5992-5999</ispartof><rights>2004 INIST-CNRS</rights><rights>Copyright American Society for Microbiology Oct 2003</rights><rights>Copyright © 2003, American Society for Microbiology 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c635t-feb1025705b1466cec3679f2b7b110af3ff97a68b12790b4b133caec234bc6b03</citedby><cites>FETCH-LOGICAL-c635t-feb1025705b1466cec3679f2b7b110af3ff97a68b12790b4b133caec234bc6b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC201206/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC201206/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,3175,3176,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15195658$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14532054$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/961099$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Eschenfeldt, W.H</creatorcontrib><creatorcontrib>Zhang, Y</creatorcontrib><creatorcontrib>Samaha, H</creatorcontrib><creatorcontrib>Stols, L</creatorcontrib><creatorcontrib>Eirich, L.D</creatorcontrib><creatorcontrib>Wilson, C.R</creatorcontrib><creatorcontrib>Donnelly, M.I</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Transformation of fatty acids catalyzed by cytochrome P450 monooxygenase enzymes of Candida tropicalis</title><title>Applied and Environmental Microbiology</title><addtitle>Appl Environ Microbiol</addtitle><description>Candida tropicalis ATCC 20336 can grow on fatty acids or alkanes as its sole source of carbon and energy, but strains blocked in beta-oxidation convert these substrates to long-chain alpha,omega-dicarboxylic acids (diacids), compounds of potential commercial value (Picataggio et al., Biotechnology 10:894-898, 1992). The initial step in the formation of these diacids, which is thought to be rate limiting, is omega-hydroxylation by a cytochrome P450 (CYP) monooxygenase. C. tropicalis ATCC 20336 contains a family of CYP genes, and when ATCC 20336 or its derivatives are exposed to oleic acid (C18:1), two cytochrome P450s, CYP52A13 and CYP52A17, are consistently strongly induced (Craft et al., this issue). To determine the relative activity of each of these enzymes and their contribution to diacid formation, both cytochrome P450s were expressed separately in insect cells in conjunction with the C. tropicalis cytochrome P450 reductase (NCP). Microsomes prepared from these cells were analyzed for their ability to oxidize fatty acids. CYP52A13 preferentially oxidized oleic acid and other unsaturated acids to omega-hydroxy acids. CYP52A17 also oxidized oleic acid efficiently but converted shorter, saturated fatty acids such as myristic acid (C14:0) much more effectively. Both enzymes, in particular CYP52A17, also oxidized omega-hydroxy fatty acids, ultimately generating the alpha,omega-diacid. Consideration of these different specificities and selectivities will help determine which enzymes to amplify in strains blocked for beta-oxidation to enhance the production of dicarboxylic acids. The activity spectrum also identified other potential oxidation targets for commercial development.</description><subject>a,^w-dicarboxylic acids</subject><subject>alkanes</subject><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Baculoviridae - genetics</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biological and medical sciences</subject><subject>CANDIDA</subject><subject>Candida tropicalis</subject><subject>Candida tropicalis - enzymology</subject><subject>Candida tropicalis - genetics</subject><subject>Carbon</subject><subject>CARBOXYLIC ACIDS</subject><subject>cell lines</subject><subject>Cells, Cultured</subject><subject>cytochrome P-450</subject><subject>Cytochrome P-450 Enzyme System - genetics</subject><subject>Cytochrome P-450 Enzyme System - metabolism</subject><subject>cytochrome P450</subject><subject>cytochrome P450 monooxygenase</subject><subject>CYTOCHROMES</subject><subject>enzyme activity</subject><subject>ENZYMES</subject><subject>Fatty acids</subject><subject>Fatty Acids - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Fungi</subject><subject>gene expression</subject><subject>GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</subject><subject>genes</subject><subject>Genetic Vectors</subject><subject>Microbiology</subject><subject>microsomes</subject><subject>Microsomes - enzymology</subject><subject>molecular cloning</subject><subject>myristic acid</subject><subject>Myristic Acid - metabolism</subject><subject>NADPH-Ferrihemoprotein Reductase - genetics</subject><subject>NADPH-Ferrihemoprotein Reductase - metabolism</subject><subject>oleic acid</subject><subject>Oleic Acid - metabolism</subject><subject>Oxidation</subject><subject>Peptides - chemistry</subject><subject>Physiology and Biotechnology</subject><subject>recombinant proteins</subject><subject>saturated fatty acids</subject><subject>Spodoptera</subject><subject>Spodoptera frugiperda</subject><subject>Substrates</subject><subject>TRANSFORMATIONS</subject><subject>transgenic insects</subject><subject>unsaturated fatty acids</subject><subject>unspecific monooxygenase</subject><subject>w-hydroxy acids</subject><issn>0099-2240</issn><issn>1098-5336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkl2PEyEUhidG49bVv6Cjid5NPcDADBdebJr1I1mjibvXBCi0bGagAlVnf71M2tjVG28OOeE5H7y8VVUjWCKE-7cXl5-XjC9LSjnHTQl8iQHIg2qBgPcNJYQ9rBYAnDcYt3BWPUnpFgBaYP3j6gy1lGCg7aKy11H6ZEMcZXbB18HWVuY81VK7daq1zHKY7sy6VlOtpxz0NobR1F9bCvUYfAi_po3xMpna-LtpNGnusJJ-7dayzjHsnJaDS0-rR1YOyTw7nufVzfvL69XH5urLh0-ri6tGM0JzY41CgGkHVKGWMW00YR23WHUKIZCWWMs7yXqFcMdBtQoRoqXRmLRKMwXkvHp36Lvbq9GstfE5ykHsohtlnESQTvx9491WbMIPgQFhYKX-5aE-pOxE0i4bvdXBe6Oz4KyIywvz5jgjhu97k7IYXdJmGKQ3YZ9ERzvKCJD_gqjnhFNABXz1D3gb9tEXocpelLPSEBeoP0A6hpSisX9ehUDMrhDFFYLxOZ1dMQcuZleU0uf3VTkVHm1QgNdHQKbyX7Z4Qrt04ijilNH-tOjWbbY_XTRCplFIM96bW6AXB8jKIOQmlkY334q-pNixZbwo8xvG0dYN</recordid><startdate>20031001</startdate><enddate>20031001</enddate><creator>Eschenfeldt, W.H</creator><creator>Zhang, Y</creator><creator>Samaha, H</creator><creator>Stols, L</creator><creator>Eirich, L.D</creator><creator>Wilson, C.R</creator><creator>Donnelly, M.I</creator><general>American Society for Microbiology</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20031001</creationdate><title>Transformation of fatty acids catalyzed by cytochrome P450 monooxygenase enzymes of Candida tropicalis</title><author>Eschenfeldt, W.H ; Zhang, Y ; Samaha, H ; Stols, L ; Eirich, L.D ; Wilson, C.R ; Donnelly, M.I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c635t-feb1025705b1466cec3679f2b7b110af3ff97a68b12790b4b133caec234bc6b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>a,^w-dicarboxylic acids</topic><topic>alkanes</topic><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Baculoviridae - genetics</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biological and medical sciences</topic><topic>CANDIDA</topic><topic>Candida tropicalis</topic><topic>Candida tropicalis - enzymology</topic><topic>Candida tropicalis - genetics</topic><topic>Carbon</topic><topic>CARBOXYLIC ACIDS</topic><topic>cell lines</topic><topic>Cells, Cultured</topic><topic>cytochrome P-450</topic><topic>Cytochrome P-450 Enzyme System - genetics</topic><topic>Cytochrome P-450 Enzyme System - metabolism</topic><topic>cytochrome P450</topic><topic>cytochrome P450 monooxygenase</topic><topic>CYTOCHROMES</topic><topic>enzyme activity</topic><topic>ENZYMES</topic><topic>Fatty acids</topic><topic>Fatty Acids - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Fungi</topic><topic>gene expression</topic><topic>GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</topic><topic>genes</topic><topic>Genetic Vectors</topic><topic>Microbiology</topic><topic>microsomes</topic><topic>Microsomes - enzymology</topic><topic>molecular cloning</topic><topic>myristic acid</topic><topic>Myristic Acid - metabolism</topic><topic>NADPH-Ferrihemoprotein Reductase - genetics</topic><topic>NADPH-Ferrihemoprotein Reductase - metabolism</topic><topic>oleic acid</topic><topic>Oleic Acid - metabolism</topic><topic>Oxidation</topic><topic>Peptides - chemistry</topic><topic>Physiology and Biotechnology</topic><topic>recombinant proteins</topic><topic>saturated fatty acids</topic><topic>Spodoptera</topic><topic>Spodoptera frugiperda</topic><topic>Substrates</topic><topic>TRANSFORMATIONS</topic><topic>transgenic insects</topic><topic>unsaturated fatty acids</topic><topic>unspecific monooxygenase</topic><topic>w-hydroxy acids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eschenfeldt, W.H</creatorcontrib><creatorcontrib>Zhang, Y</creatorcontrib><creatorcontrib>Samaha, H</creatorcontrib><creatorcontrib>Stols, L</creatorcontrib><creatorcontrib>Eirich, L.D</creatorcontrib><creatorcontrib>Wilson, C.R</creatorcontrib><creatorcontrib>Donnelly, M.I</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied and Environmental Microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eschenfeldt, W.H</au><au>Zhang, Y</au><au>Samaha, H</au><au>Stols, L</au><au>Eirich, L.D</au><au>Wilson, C.R</au><au>Donnelly, M.I</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transformation of fatty acids catalyzed by cytochrome P450 monooxygenase enzymes of Candida tropicalis</atitle><jtitle>Applied and Environmental Microbiology</jtitle><addtitle>Appl Environ Microbiol</addtitle><date>2003-10-01</date><risdate>2003</risdate><volume>69</volume><issue>10</issue><spage>5992</spage><epage>5999</epage><pages>5992-5999</pages><issn>0099-2240</issn><eissn>1098-5336</eissn><coden>AEMIDF</coden><abstract>Candida tropicalis ATCC 20336 can grow on fatty acids or alkanes as its sole source of carbon and energy, but strains blocked in beta-oxidation convert these substrates to long-chain alpha,omega-dicarboxylic acids (diacids), compounds of potential commercial value (Picataggio et al., Biotechnology 10:894-898, 1992). The initial step in the formation of these diacids, which is thought to be rate limiting, is omega-hydroxylation by a cytochrome P450 (CYP) monooxygenase. C. tropicalis ATCC 20336 contains a family of CYP genes, and when ATCC 20336 or its derivatives are exposed to oleic acid (C18:1), two cytochrome P450s, CYP52A13 and CYP52A17, are consistently strongly induced (Craft et al., this issue). To determine the relative activity of each of these enzymes and their contribution to diacid formation, both cytochrome P450s were expressed separately in insect cells in conjunction with the C. tropicalis cytochrome P450 reductase (NCP). Microsomes prepared from these cells were analyzed for their ability to oxidize fatty acids. CYP52A13 preferentially oxidized oleic acid and other unsaturated acids to omega-hydroxy acids. CYP52A17 also oxidized oleic acid efficiently but converted shorter, saturated fatty acids such as myristic acid (C14:0) much more effectively. Both enzymes, in particular CYP52A17, also oxidized omega-hydroxy fatty acids, ultimately generating the alpha,omega-diacid. Consideration of these different specificities and selectivities will help determine which enzymes to amplify in strains blocked for beta-oxidation to enhance the production of dicarboxylic acids. The activity spectrum also identified other potential oxidation targets for commercial development.</abstract><cop>Washington, DC</cop><pub>American Society for Microbiology</pub><pmid>14532054</pmid><doi>10.1128/AEM.69.10.5992-5999.2003</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0099-2240 |
ispartof | Applied and Environmental Microbiology, 2003-10, Vol.69 (10), p.5992-5999 |
issn | 0099-2240 1098-5336 |
language | eng |
recordid | cdi_proquest_miscellaneous_18939501 |
source | American Society for Microbiology; MEDLINE; PubMed Central; Alma/SFX Local Collection |
subjects | a,^w-dicarboxylic acids alkanes Amino Acid Sequence Animals Baculoviridae - genetics BASIC BIOLOGICAL SCIENCES Biological and medical sciences CANDIDA Candida tropicalis Candida tropicalis - enzymology Candida tropicalis - genetics Carbon CARBOXYLIC ACIDS cell lines Cells, Cultured cytochrome P-450 Cytochrome P-450 Enzyme System - genetics Cytochrome P-450 Enzyme System - metabolism cytochrome P450 cytochrome P450 monooxygenase CYTOCHROMES enzyme activity ENZYMES Fatty acids Fatty Acids - metabolism Fundamental and applied biological sciences. Psychology Fungi gene expression GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE genes Genetic Vectors Microbiology microsomes Microsomes - enzymology molecular cloning myristic acid Myristic Acid - metabolism NADPH-Ferrihemoprotein Reductase - genetics NADPH-Ferrihemoprotein Reductase - metabolism oleic acid Oleic Acid - metabolism Oxidation Peptides - chemistry Physiology and Biotechnology recombinant proteins saturated fatty acids Spodoptera Spodoptera frugiperda Substrates TRANSFORMATIONS transgenic insects unsaturated fatty acids unspecific monooxygenase w-hydroxy acids |
title | Transformation of fatty acids catalyzed by cytochrome P450 monooxygenase enzymes of Candida tropicalis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T02%3A26%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transformation%20of%20fatty%20acids%20catalyzed%20by%20cytochrome%20P450%20monooxygenase%20enzymes%20of%20Candida%20tropicalis&rft.jtitle=Applied%20and%20Environmental%20Microbiology&rft.au=Eschenfeldt,%20W.H&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2003-10-01&rft.volume=69&rft.issue=10&rft.spage=5992&rft.epage=5999&rft.pages=5992-5999&rft.issn=0099-2240&rft.eissn=1098-5336&rft.coden=AEMIDF&rft_id=info:doi/10.1128/AEM.69.10.5992-5999.2003&rft_dat=%3Cproquest_pasca%3E704653331%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=205965752&rft_id=info:pmid/14532054&rfr_iscdi=true |