Estimation of the time delay of coupling between oscillators from time realizations of oscillation phases for different properties of phase dynamics

The problem of interval estimation of the time delay of the coupling between oscillatory systems from observed time series is considered. It is shown that the known asymptotic estimates based on the empirical model in the form of a system of first-order phase oscillators and the maximum likelihood f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of communications technology & electronics 2017-03, Vol.62 (3), p.241-250
Hauptverfasser: Sidak, E. V., Smirnov, D. A., Bezruchko, B. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 250
container_issue 3
container_start_page 241
container_title Journal of communications technology & electronics
container_volume 62
creator Sidak, E. V.
Smirnov, D. A.
Bezruchko, B. P.
description The problem of interval estimation of the time delay of the coupling between oscillatory systems from observed time series is considered. It is shown that the known asymptotic estimates based on the empirical model in the form of a system of first-order phase oscillators and the maximum likelihood formalism can lead to false inferences of the value of the time delay in two typical situations: 1) nonlinear low-dimensional systems whose phases are well-determined but, as a result of significant amplitude fluctuations, the phase approximation is insufficient for describing the dynamics and 2) systems whose phases are defined not quite well because of too large amplitude fluctuations. A method for empirical diagnostics of problematic situations and its modification (coarse estimation) providing a low probability of false inferences in these situation are proposed. The efficiency of the diagnostic criterion and coarse estimation suggested is demonstrated on reference systems with different dynamic properties (linear stochastic oscillators, van der Pol oscillators, and Ressler and Lorenz chaotic systems).
doi_str_mv 10.1134/S1064226917030196
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1893917288</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A497909388</galeid><sourcerecordid>A497909388</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-4dc4ee71165db150098604169a19c21aa78e3f0818dfe36c428c973103ca2aa83</originalsourceid><addsrcrecordid>eNp10t9r1TAUB_AiCs7pH-BbwRcFO3Oa_kgex5g6GAhOn0tuetKb0ZvUnJR5_Tv2By-9VdhVpNCmyed7OGmTZa-BnQHw6sMNsKYqy0ZCyzgD2TzJTqCu66Kp6_ZpGqflYll_nr0gumWMy4bxk-z-kqLdqWi9y73J4xbz9I55j6PaLzPaz9No3ZBvMN4hJkXajqOKPlBugt-tPqAa7a9DHVpif9RSd9oqwoR9yHtrDAZ0MZ-CnzBEiwd-IHm_d2pnNb3Mnhk1Er76_TzNvn-8_Hbxubj-8unq4vy60FUtY1H1ukJsAZq630DNmBQNq6CRCqQuQalWIDdMgOgN8kZXpdCy5cC4VqVSgp9mb9e6qZkfM1LsdpY0pr4d-pk6EJKnD1qKhb75i976ObjUXVICKsYFg6TOVjWoETvrjI9B6XT1mPblHRqb5s8r2Uom-aHsu6NAMhF_xkHNRN3Vzddj-_6R3cxkHVK6kR22kdbIEYeV6-CJAppuCulPh30HrFvOTPfPmUmZcs1Qsm7A8GiX_w09ANm9w-s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1881403801</pqid></control><display><type>article</type><title>Estimation of the time delay of coupling between oscillators from time realizations of oscillation phases for different properties of phase dynamics</title><source>SpringerLink Journals</source><creator>Sidak, E. V. ; Smirnov, D. A. ; Bezruchko, B. P.</creator><creatorcontrib>Sidak, E. V. ; Smirnov, D. A. ; Bezruchko, B. P.</creatorcontrib><description>The problem of interval estimation of the time delay of the coupling between oscillatory systems from observed time series is considered. It is shown that the known asymptotic estimates based on the empirical model in the form of a system of first-order phase oscillators and the maximum likelihood formalism can lead to false inferences of the value of the time delay in two typical situations: 1) nonlinear low-dimensional systems whose phases are well-determined but, as a result of significant amplitude fluctuations, the phase approximation is insufficient for describing the dynamics and 2) systems whose phases are defined not quite well because of too large amplitude fluctuations. A method for empirical diagnostics of problematic situations and its modification (coarse estimation) providing a low probability of false inferences in these situation are proposed. The efficiency of the diagnostic criterion and coarse estimation suggested is demonstrated on reference systems with different dynamic properties (linear stochastic oscillators, van der Pol oscillators, and Ressler and Lorenz chaotic systems).</description><identifier>ISSN: 1064-2269</identifier><identifier>EISSN: 1555-6557</identifier><identifier>DOI: 10.1134/S1064226917030196</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Amplitudes ; Approximation ; Communications Engineering ; Communications technology ; Connectors ; Diagnostic systems ; Diagnostics ; Dynamical systems ; Dynamics ; Dynamics Chaos in Radiophysics and Electronics ; Engineering ; Estimates ; Estimating techniques ; Networks ; Noise ; Nonlinear dynamics ; Oscillators ; Phases ; Studies ; Time ; Time delay ; Time series</subject><ispartof>Journal of communications technology &amp; electronics, 2017-03, Vol.62 (3), p.241-250</ispartof><rights>Pleiades Publishing, Inc. 2017</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Journal of Communications Technology and Electronics is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-4dc4ee71165db150098604169a19c21aa78e3f0818dfe36c428c973103ca2aa83</citedby><cites>FETCH-LOGICAL-c459t-4dc4ee71165db150098604169a19c21aa78e3f0818dfe36c428c973103ca2aa83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1064226917030196$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1064226917030196$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Sidak, E. V.</creatorcontrib><creatorcontrib>Smirnov, D. A.</creatorcontrib><creatorcontrib>Bezruchko, B. P.</creatorcontrib><title>Estimation of the time delay of coupling between oscillators from time realizations of oscillation phases for different properties of phase dynamics</title><title>Journal of communications technology &amp; electronics</title><addtitle>J. Commun. Technol. Electron</addtitle><description>The problem of interval estimation of the time delay of the coupling between oscillatory systems from observed time series is considered. It is shown that the known asymptotic estimates based on the empirical model in the form of a system of first-order phase oscillators and the maximum likelihood formalism can lead to false inferences of the value of the time delay in two typical situations: 1) nonlinear low-dimensional systems whose phases are well-determined but, as a result of significant amplitude fluctuations, the phase approximation is insufficient for describing the dynamics and 2) systems whose phases are defined not quite well because of too large amplitude fluctuations. A method for empirical diagnostics of problematic situations and its modification (coarse estimation) providing a low probability of false inferences in these situation are proposed. The efficiency of the diagnostic criterion and coarse estimation suggested is demonstrated on reference systems with different dynamic properties (linear stochastic oscillators, van der Pol oscillators, and Ressler and Lorenz chaotic systems).</description><subject>Amplitudes</subject><subject>Approximation</subject><subject>Communications Engineering</subject><subject>Communications technology</subject><subject>Connectors</subject><subject>Diagnostic systems</subject><subject>Diagnostics</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Dynamics Chaos in Radiophysics and Electronics</subject><subject>Engineering</subject><subject>Estimates</subject><subject>Estimating techniques</subject><subject>Networks</subject><subject>Noise</subject><subject>Nonlinear dynamics</subject><subject>Oscillators</subject><subject>Phases</subject><subject>Studies</subject><subject>Time</subject><subject>Time delay</subject><subject>Time series</subject><issn>1064-2269</issn><issn>1555-6557</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><sourceid>BENPR</sourceid><recordid>eNp10t9r1TAUB_AiCs7pH-BbwRcFO3Oa_kgex5g6GAhOn0tuetKb0ZvUnJR5_Tv2By-9VdhVpNCmyed7OGmTZa-BnQHw6sMNsKYqy0ZCyzgD2TzJTqCu66Kp6_ZpGqflYll_nr0gumWMy4bxk-z-kqLdqWi9y73J4xbz9I55j6PaLzPaz9No3ZBvMN4hJkXajqOKPlBugt-tPqAa7a9DHVpif9RSd9oqwoR9yHtrDAZ0MZ-CnzBEiwd-IHm_d2pnNb3Mnhk1Er76_TzNvn-8_Hbxubj-8unq4vy60FUtY1H1ukJsAZq630DNmBQNq6CRCqQuQalWIDdMgOgN8kZXpdCy5cC4VqVSgp9mb9e6qZkfM1LsdpY0pr4d-pk6EJKnD1qKhb75i976ObjUXVICKsYFg6TOVjWoETvrjI9B6XT1mPblHRqb5s8r2Uom-aHsu6NAMhF_xkHNRN3Vzddj-_6R3cxkHVK6kR22kdbIEYeV6-CJAppuCulPh30HrFvOTPfPmUmZcs1Qsm7A8GiX_w09ANm9w-s</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Sidak, E. V.</creator><creator>Smirnov, D. A.</creator><creator>Bezruchko, B. P.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>ISR</scope><scope>3V.</scope><scope>7SP</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>88K</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L7M</scope><scope>M0C</scope><scope>M2P</scope><scope>M2T</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20170301</creationdate><title>Estimation of the time delay of coupling between oscillators from time realizations of oscillation phases for different properties of phase dynamics</title><author>Sidak, E. V. ; Smirnov, D. A. ; Bezruchko, B. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-4dc4ee71165db150098604169a19c21aa78e3f0818dfe36c428c973103ca2aa83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Amplitudes</topic><topic>Approximation</topic><topic>Communications Engineering</topic><topic>Communications technology</topic><topic>Connectors</topic><topic>Diagnostic systems</topic><topic>Diagnostics</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Dynamics Chaos in Radiophysics and Electronics</topic><topic>Engineering</topic><topic>Estimates</topic><topic>Estimating techniques</topic><topic>Networks</topic><topic>Noise</topic><topic>Nonlinear dynamics</topic><topic>Oscillators</topic><topic>Phases</topic><topic>Studies</topic><topic>Time</topic><topic>Time delay</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sidak, E. V.</creatorcontrib><creatorcontrib>Smirnov, D. A.</creatorcontrib><creatorcontrib>Bezruchko, B. P.</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of communications technology &amp; electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sidak, E. V.</au><au>Smirnov, D. A.</au><au>Bezruchko, B. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of the time delay of coupling between oscillators from time realizations of oscillation phases for different properties of phase dynamics</atitle><jtitle>Journal of communications technology &amp; electronics</jtitle><stitle>J. Commun. Technol. Electron</stitle><date>2017-03-01</date><risdate>2017</risdate><volume>62</volume><issue>3</issue><spage>241</spage><epage>250</epage><pages>241-250</pages><issn>1064-2269</issn><eissn>1555-6557</eissn><abstract>The problem of interval estimation of the time delay of the coupling between oscillatory systems from observed time series is considered. It is shown that the known asymptotic estimates based on the empirical model in the form of a system of first-order phase oscillators and the maximum likelihood formalism can lead to false inferences of the value of the time delay in two typical situations: 1) nonlinear low-dimensional systems whose phases are well-determined but, as a result of significant amplitude fluctuations, the phase approximation is insufficient for describing the dynamics and 2) systems whose phases are defined not quite well because of too large amplitude fluctuations. A method for empirical diagnostics of problematic situations and its modification (coarse estimation) providing a low probability of false inferences in these situation are proposed. The efficiency of the diagnostic criterion and coarse estimation suggested is demonstrated on reference systems with different dynamic properties (linear stochastic oscillators, van der Pol oscillators, and Ressler and Lorenz chaotic systems).</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1064226917030196</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-2269
ispartof Journal of communications technology & electronics, 2017-03, Vol.62 (3), p.241-250
issn 1064-2269
1555-6557
language eng
recordid cdi_proquest_miscellaneous_1893917288
source SpringerLink Journals
subjects Amplitudes
Approximation
Communications Engineering
Communications technology
Connectors
Diagnostic systems
Diagnostics
Dynamical systems
Dynamics
Dynamics Chaos in Radiophysics and Electronics
Engineering
Estimates
Estimating techniques
Networks
Noise
Nonlinear dynamics
Oscillators
Phases
Studies
Time
Time delay
Time series
title Estimation of the time delay of coupling between oscillators from time realizations of oscillation phases for different properties of phase dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T05%3A40%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20the%20time%20delay%20of%20coupling%20between%20oscillators%20from%20time%20realizations%20of%20oscillation%20phases%20for%20different%20properties%20of%20phase%20dynamics&rft.jtitle=Journal%20of%20communications%20technology%20&%20electronics&rft.au=Sidak,%20E.%20V.&rft.date=2017-03-01&rft.volume=62&rft.issue=3&rft.spage=241&rft.epage=250&rft.pages=241-250&rft.issn=1064-2269&rft.eissn=1555-6557&rft_id=info:doi/10.1134/S1064226917030196&rft_dat=%3Cgale_proqu%3EA497909388%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1881403801&rft_id=info:pmid/&rft_galeid=A497909388&rfr_iscdi=true