Two-stage network games
In the paper, two-stage network games are studied. At the first stage of the game, the players form a network, while at the second stage they choose strategies according to the network realized at the first stage. Both noncooperative and cooperative settings are considered. In the noncooperative cas...
Gespeichert in:
Veröffentlicht in: | Automation and remote control 2016-10, Vol.77 (10), p.1855-1866 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1866 |
---|---|
container_issue | 10 |
container_start_page | 1855 |
container_title | Automation and remote control |
container_volume | 77 |
creator | Petrosyan, L. A. Sedakov, A. A. Bochkarev, A. O. |
description | In the paper, two-stage network games are studied. At the first stage of the game, the players form a network, while at the second stage they choose strategies according to the network realized at the first stage. Both noncooperative and cooperative settings are considered. In the noncooperative case, the Nash equilibrium is used as a solution concept, whereas the cooperative setting involves an allocation (the Shapley value) as a solution concept. It is demonstrated that the Shapley value does not satisfy the time consistency property. |
doi_str_mv | 10.1134/S000511791610012X |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1893917029</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880851775</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-d853447711a833ed756e4524546429b54a16fdf179860ebe06f2ef4062c98e383</originalsourceid><addsrcrecordid>eNp1kM1Lw0AQxRdRsFbP4q3gxUt0Zr_3KMUvKHiwgrewTSeltUnqbkLxv3dDPIjiaQ7v994bHmMXCNeIQt68AIBCNA41AiB_O2Aj1GAzAYIfslEvZ71-zE5i3CQEgYsRO5_vmyy2fkWTmtp9E94nK19RPGVHpd9GOvu-Y_Z6fzefPmaz54en6e0sK4Qzbba0SkhpDKK3QtDSKE1ScamkltwtlPSoy2WZeq0GWhDoklMpQfPCWRJWjNnVkLsLzUdHsc2rdSxou_U1NV3M0Trh0AB3Cb38hW6aLtTpu0RZsAqNUYnCgSpCE2OgMt-FdeXDZ46Q91Plf6ZKHj54YmLrFYUfyf-avgAPAGaM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880851775</pqid></control><display><type>article</type><title>Two-stage network games</title><source>SpringerLink_现刊</source><creator>Petrosyan, L. A. ; Sedakov, A. A. ; Bochkarev, A. O.</creator><creatorcontrib>Petrosyan, L. A. ; Sedakov, A. A. ; Bochkarev, A. O.</creatorcontrib><description>In the paper, two-stage network games are studied. At the first stage of the game, the players form a network, while at the second stage they choose strategies according to the network realized at the first stage. Both noncooperative and cooperative settings are considered. In the noncooperative case, the Nash equilibrium is used as a solution concept, whereas the cooperative setting involves an allocation (the Shapley value) as a solution concept. It is demonstrated that the Shapley value does not satisfy the time consistency property.</description><identifier>ISSN: 0005-1179</identifier><identifier>EISSN: 1608-3032</identifier><identifier>DOI: 10.1134/S000511791610012X</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Allocations ; CAE) and Design ; Calculus of Variations and Optimal Control; Optimization ; Computer-Aided Engineering (CAD ; Consistency ; Control ; Economic models ; Game theory ; Games ; Mathematical Game Theory and Applications ; Mathematics ; Mathematics and Statistics ; Mechanical Engineering ; Mechatronics ; Networks ; Players ; Remote control ; Robotics ; Strategy ; Systems Theory</subject><ispartof>Automation and remote control, 2016-10, Vol.77 (10), p.1855-1866</ispartof><rights>Pleiades Publishing, Ltd. 2016</rights><rights>Copyright Springer Science & Business Media 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-d853447711a833ed756e4524546429b54a16fdf179860ebe06f2ef4062c98e383</citedby><cites>FETCH-LOGICAL-c397t-d853447711a833ed756e4524546429b54a16fdf179860ebe06f2ef4062c98e383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S000511791610012X$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S000511791610012X$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Petrosyan, L. A.</creatorcontrib><creatorcontrib>Sedakov, A. A.</creatorcontrib><creatorcontrib>Bochkarev, A. O.</creatorcontrib><title>Two-stage network games</title><title>Automation and remote control</title><addtitle>Autom Remote Control</addtitle><description>In the paper, two-stage network games are studied. At the first stage of the game, the players form a network, while at the second stage they choose strategies according to the network realized at the first stage. Both noncooperative and cooperative settings are considered. In the noncooperative case, the Nash equilibrium is used as a solution concept, whereas the cooperative setting involves an allocation (the Shapley value) as a solution concept. It is demonstrated that the Shapley value does not satisfy the time consistency property.</description><subject>Allocations</subject><subject>CAE) and Design</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Consistency</subject><subject>Control</subject><subject>Economic models</subject><subject>Game theory</subject><subject>Games</subject><subject>Mathematical Game Theory and Applications</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mechanical Engineering</subject><subject>Mechatronics</subject><subject>Networks</subject><subject>Players</subject><subject>Remote control</subject><subject>Robotics</subject><subject>Strategy</subject><subject>Systems Theory</subject><issn>0005-1179</issn><issn>1608-3032</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kM1Lw0AQxRdRsFbP4q3gxUt0Zr_3KMUvKHiwgrewTSeltUnqbkLxv3dDPIjiaQ7v994bHmMXCNeIQt68AIBCNA41AiB_O2Aj1GAzAYIfslEvZ71-zE5i3CQEgYsRO5_vmyy2fkWTmtp9E94nK19RPGVHpd9GOvu-Y_Z6fzefPmaz54en6e0sK4Qzbba0SkhpDKK3QtDSKE1ScamkltwtlPSoy2WZeq0GWhDoklMpQfPCWRJWjNnVkLsLzUdHsc2rdSxou_U1NV3M0Trh0AB3Cb38hW6aLtTpu0RZsAqNUYnCgSpCE2OgMt-FdeXDZ46Q91Plf6ZKHj54YmLrFYUfyf-avgAPAGaM</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Petrosyan, L. A.</creator><creator>Sedakov, A. A.</creator><creator>Bochkarev, A. O.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20161001</creationdate><title>Two-stage network games</title><author>Petrosyan, L. A. ; Sedakov, A. A. ; Bochkarev, A. O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-d853447711a833ed756e4524546429b54a16fdf179860ebe06f2ef4062c98e383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Allocations</topic><topic>CAE) and Design</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Consistency</topic><topic>Control</topic><topic>Economic models</topic><topic>Game theory</topic><topic>Games</topic><topic>Mathematical Game Theory and Applications</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mechanical Engineering</topic><topic>Mechatronics</topic><topic>Networks</topic><topic>Players</topic><topic>Remote control</topic><topic>Robotics</topic><topic>Strategy</topic><topic>Systems Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Petrosyan, L. A.</creatorcontrib><creatorcontrib>Sedakov, A. A.</creatorcontrib><creatorcontrib>Bochkarev, A. O.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Automation and remote control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Petrosyan, L. A.</au><au>Sedakov, A. A.</au><au>Bochkarev, A. O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-stage network games</atitle><jtitle>Automation and remote control</jtitle><stitle>Autom Remote Control</stitle><date>2016-10-01</date><risdate>2016</risdate><volume>77</volume><issue>10</issue><spage>1855</spage><epage>1866</epage><pages>1855-1866</pages><issn>0005-1179</issn><eissn>1608-3032</eissn><abstract>In the paper, two-stage network games are studied. At the first stage of the game, the players form a network, while at the second stage they choose strategies according to the network realized at the first stage. Both noncooperative and cooperative settings are considered. In the noncooperative case, the Nash equilibrium is used as a solution concept, whereas the cooperative setting involves an allocation (the Shapley value) as a solution concept. It is demonstrated that the Shapley value does not satisfy the time consistency property.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S000511791610012X</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0005-1179 |
ispartof | Automation and remote control, 2016-10, Vol.77 (10), p.1855-1866 |
issn | 0005-1179 1608-3032 |
language | eng |
recordid | cdi_proquest_miscellaneous_1893917029 |
source | SpringerLink_现刊 |
subjects | Allocations CAE) and Design Calculus of Variations and Optimal Control Optimization Computer-Aided Engineering (CAD Consistency Control Economic models Game theory Games Mathematical Game Theory and Applications Mathematics Mathematics and Statistics Mechanical Engineering Mechatronics Networks Players Remote control Robotics Strategy Systems Theory |
title | Two-stage network games |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T09%3A47%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-stage%20network%20games&rft.jtitle=Automation%20and%20remote%20control&rft.au=Petrosyan,%20L.%20A.&rft.date=2016-10-01&rft.volume=77&rft.issue=10&rft.spage=1855&rft.epage=1866&rft.pages=1855-1866&rft.issn=0005-1179&rft.eissn=1608-3032&rft_id=info:doi/10.1134/S000511791610012X&rft_dat=%3Cproquest_cross%3E1880851775%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880851775&rft_id=info:pmid/&rfr_iscdi=true |