Energy approach to stability analysis of the linear stationary dynamic systems

A new approach was proposed to analyze the stability of the linear continuous stationary dynamic systems. It is based on the decomposition of a square H 2 norm of the transfer function of the dynamic system into parts corresponding either to particular eigenvalues of the system matrix, or to pairwis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Automation and remote control 2016-12, Vol.77 (12), p.2132-2149
Hauptverfasser: Yadykin, I. B., Iskakov, A. B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2149
container_issue 12
container_start_page 2132
container_title Automation and remote control
container_volume 77
creator Yadykin, I. B.
Iskakov, A. B.
description A new approach was proposed to analyze the stability of the linear continuous stationary dynamic systems. It is based on the decomposition of a square H 2 norm of the transfer function of the dynamic system into parts corresponding either to particular eigenvalues of the system matrix, or to pairwise combinations of these eigenvalues. The spectral decompositions of a square H 2 norm of the transfer function with multiple poles were obtained using the residues of the transfer function and their derivatives. Exact analytical expressions for calculation of the quadratic forms of the corresponding expansions were derived for an arbitrary location of the eigenvalues in the left half-plane. The obtained decompositions allow one to characterize the contribution of individual eigen-components or their pairwise combinations into the asymptotic variation of the system energy. We propose the energy criterion for estimation of the system stability margins that uses an evaluation of energy accumulated in a group of weakly stable system modes. This approach is illustrated by calculating the energy of a band-pass filter.
doi_str_mv 10.1134/S0005117916120043
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1893916554</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880815189</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-d026e3e1d55436a9b9872cec4100a84a36b8d3b5e9b1c047c848e72e18efed4e3</originalsourceid><addsrcrecordid>eNp1kM1LxDAQxYMouFb_AG8BL16qM03apkdZ1g8QPajnkqbT3Sz9WJPsof-9LetBFE8DM7_3mPcYu0S4QRTy9g0AUsS8wAwTACmO2AIzULEAkRyzxXyO5_spO_N-C4AIiViwl1VPbj1yvdu5QZsNDwP3QVe2tWHa9rodvfV8aHjYEG9tT9rNQLBDr93I67HXnTXcjz5Q58_ZSaNbTxffM2If96v35WP8_PrwtLx7jo2QRYhrSDIShHWaSpHpoipUnhgyEgG0klpklapFlVJRoQGZGyUV5QmhooZqSSJi1wff6evPPflQdtYbalvd07D3JapCTFXM9hG7-oVuh72bgs2UAoXpDEcMD5Rxg_eOmnLnbDclLBHKueHyT8OTJjlo_MT2a3I_nP8VfQHEyHyz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880815189</pqid></control><display><type>article</type><title>Energy approach to stability analysis of the linear stationary dynamic systems</title><source>SpringerLink Journals - AutoHoldings</source><creator>Yadykin, I. B. ; Iskakov, A. B.</creator><creatorcontrib>Yadykin, I. B. ; Iskakov, A. B.</creatorcontrib><description>A new approach was proposed to analyze the stability of the linear continuous stationary dynamic systems. It is based on the decomposition of a square H 2 norm of the transfer function of the dynamic system into parts corresponding either to particular eigenvalues of the system matrix, or to pairwise combinations of these eigenvalues. The spectral decompositions of a square H 2 norm of the transfer function with multiple poles were obtained using the residues of the transfer function and their derivatives. Exact analytical expressions for calculation of the quadratic forms of the corresponding expansions were derived for an arbitrary location of the eigenvalues in the left half-plane. The obtained decompositions allow one to characterize the contribution of individual eigen-components or their pairwise combinations into the asymptotic variation of the system energy. We propose the energy criterion for estimation of the system stability margins that uses an evaluation of energy accumulated in a group of weakly stable system modes. This approach is illustrated by calculating the energy of a band-pass filter.</description><identifier>ISSN: 0005-1179</identifier><identifier>EISSN: 1608-3032</identifier><identifier>DOI: 10.1134/S0005117916120043</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Bandpass filters ; CAE) and Design ; Calculus of Variations and Optimal Control; Optimization ; Computer-Aided Engineering (CAD ; Control ; Decomposition ; Dynamic stability ; Dynamical systems ; Dynamics ; Eigenvalues ; Linear Systems ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Mechanical Engineering ; Mechatronics ; Quadratic forms ; Robotics ; Stability analysis ; Systems analysis ; Systems stability ; Systems Theory ; Transfer functions</subject><ispartof>Automation and remote control, 2016-12, Vol.77 (12), p.2132-2149</ispartof><rights>Pleiades Publishing, Ltd. 2016</rights><rights>Copyright Springer Science &amp; Business Media 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-d026e3e1d55436a9b9872cec4100a84a36b8d3b5e9b1c047c848e72e18efed4e3</citedby><cites>FETCH-LOGICAL-c349t-d026e3e1d55436a9b9872cec4100a84a36b8d3b5e9b1c047c848e72e18efed4e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0005117916120043$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0005117916120043$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Yadykin, I. B.</creatorcontrib><creatorcontrib>Iskakov, A. B.</creatorcontrib><title>Energy approach to stability analysis of the linear stationary dynamic systems</title><title>Automation and remote control</title><addtitle>Autom Remote Control</addtitle><description>A new approach was proposed to analyze the stability of the linear continuous stationary dynamic systems. It is based on the decomposition of a square H 2 norm of the transfer function of the dynamic system into parts corresponding either to particular eigenvalues of the system matrix, or to pairwise combinations of these eigenvalues. The spectral decompositions of a square H 2 norm of the transfer function with multiple poles were obtained using the residues of the transfer function and their derivatives. Exact analytical expressions for calculation of the quadratic forms of the corresponding expansions were derived for an arbitrary location of the eigenvalues in the left half-plane. The obtained decompositions allow one to characterize the contribution of individual eigen-components or their pairwise combinations into the asymptotic variation of the system energy. We propose the energy criterion for estimation of the system stability margins that uses an evaluation of energy accumulated in a group of weakly stable system modes. This approach is illustrated by calculating the energy of a band-pass filter.</description><subject>Bandpass filters</subject><subject>CAE) and Design</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Control</subject><subject>Decomposition</subject><subject>Dynamic stability</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Eigenvalues</subject><subject>Linear Systems</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mechanical Engineering</subject><subject>Mechatronics</subject><subject>Quadratic forms</subject><subject>Robotics</subject><subject>Stability analysis</subject><subject>Systems analysis</subject><subject>Systems stability</subject><subject>Systems Theory</subject><subject>Transfer functions</subject><issn>0005-1179</issn><issn>1608-3032</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LxDAQxYMouFb_AG8BL16qM03apkdZ1g8QPajnkqbT3Sz9WJPsof-9LetBFE8DM7_3mPcYu0S4QRTy9g0AUsS8wAwTACmO2AIzULEAkRyzxXyO5_spO_N-C4AIiViwl1VPbj1yvdu5QZsNDwP3QVe2tWHa9rodvfV8aHjYEG9tT9rNQLBDr93I67HXnTXcjz5Q58_ZSaNbTxffM2If96v35WP8_PrwtLx7jo2QRYhrSDIShHWaSpHpoipUnhgyEgG0klpklapFlVJRoQGZGyUV5QmhooZqSSJi1wff6evPPflQdtYbalvd07D3JapCTFXM9hG7-oVuh72bgs2UAoXpDEcMD5Rxg_eOmnLnbDclLBHKueHyT8OTJjlo_MT2a3I_nP8VfQHEyHyz</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Yadykin, I. B.</creator><creator>Iskakov, A. B.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20161201</creationdate><title>Energy approach to stability analysis of the linear stationary dynamic systems</title><author>Yadykin, I. B. ; Iskakov, A. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-d026e3e1d55436a9b9872cec4100a84a36b8d3b5e9b1c047c848e72e18efed4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Bandpass filters</topic><topic>CAE) and Design</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Control</topic><topic>Decomposition</topic><topic>Dynamic stability</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Eigenvalues</topic><topic>Linear Systems</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mechanical Engineering</topic><topic>Mechatronics</topic><topic>Quadratic forms</topic><topic>Robotics</topic><topic>Stability analysis</topic><topic>Systems analysis</topic><topic>Systems stability</topic><topic>Systems Theory</topic><topic>Transfer functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yadykin, I. B.</creatorcontrib><creatorcontrib>Iskakov, A. B.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Automation and remote control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yadykin, I. B.</au><au>Iskakov, A. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy approach to stability analysis of the linear stationary dynamic systems</atitle><jtitle>Automation and remote control</jtitle><stitle>Autom Remote Control</stitle><date>2016-12-01</date><risdate>2016</risdate><volume>77</volume><issue>12</issue><spage>2132</spage><epage>2149</epage><pages>2132-2149</pages><issn>0005-1179</issn><eissn>1608-3032</eissn><abstract>A new approach was proposed to analyze the stability of the linear continuous stationary dynamic systems. It is based on the decomposition of a square H 2 norm of the transfer function of the dynamic system into parts corresponding either to particular eigenvalues of the system matrix, or to pairwise combinations of these eigenvalues. The spectral decompositions of a square H 2 norm of the transfer function with multiple poles were obtained using the residues of the transfer function and their derivatives. Exact analytical expressions for calculation of the quadratic forms of the corresponding expansions were derived for an arbitrary location of the eigenvalues in the left half-plane. The obtained decompositions allow one to characterize the contribution of individual eigen-components or their pairwise combinations into the asymptotic variation of the system energy. We propose the energy criterion for estimation of the system stability margins that uses an evaluation of energy accumulated in a group of weakly stable system modes. This approach is illustrated by calculating the energy of a band-pass filter.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0005117916120043</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0005-1179
ispartof Automation and remote control, 2016-12, Vol.77 (12), p.2132-2149
issn 0005-1179
1608-3032
language eng
recordid cdi_proquest_miscellaneous_1893916554
source SpringerLink Journals - AutoHoldings
subjects Bandpass filters
CAE) and Design
Calculus of Variations and Optimal Control
Optimization
Computer-Aided Engineering (CAD
Control
Decomposition
Dynamic stability
Dynamical systems
Dynamics
Eigenvalues
Linear Systems
Mathematical analysis
Mathematics
Mathematics and Statistics
Mechanical Engineering
Mechatronics
Quadratic forms
Robotics
Stability analysis
Systems analysis
Systems stability
Systems Theory
Transfer functions
title Energy approach to stability analysis of the linear stationary dynamic systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A05%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20approach%20to%20stability%20analysis%20of%20the%20linear%20stationary%20dynamic%20systems&rft.jtitle=Automation%20and%20remote%20control&rft.au=Yadykin,%20I.%20B.&rft.date=2016-12-01&rft.volume=77&rft.issue=12&rft.spage=2132&rft.epage=2149&rft.pages=2132-2149&rft.issn=0005-1179&rft.eissn=1608-3032&rft_id=info:doi/10.1134/S0005117916120043&rft_dat=%3Cproquest_cross%3E1880815189%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880815189&rft_id=info:pmid/&rfr_iscdi=true