Quantitative Precipitation Estimation Integrated by Poisson’s Equation Using Radar Mosaic, Satellite, and Rain Gauge Network

AbstractHigh-resolution quantitative precipitation estimation (QPE) from radar and satellite combined with rain gauges is one of the most important guides for hydrological forecasts. Whereas rain gauges provide accurate measurement at a point, remote sensing helps to retrieve the spatial pattern. An...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hydrologic engineering 2017-05, Vol.22 (5)
Hauptverfasser: Calvetti, Leonardo, Beneti, Cesar, Neundorf, Réverton Luís Antunes, Inouye, Rafael Toshio, Santos, Tiago Noronha dos, Gomes, Ana Maria, Herdies, Dirceu Luis, de Gonçalves, Luis Gustavo Gonçalves
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Journal of hydrologic engineering
container_volume 22
creator Calvetti, Leonardo
Beneti, Cesar
Neundorf, Réverton Luís Antunes
Inouye, Rafael Toshio
Santos, Tiago Noronha dos
Gomes, Ana Maria
Herdies, Dirceu Luis
de Gonçalves, Luis Gustavo Gonçalves
description AbstractHigh-resolution quantitative precipitation estimation (QPE) from radar and satellite combined with rain gauges is one of the most important guides for hydrological forecasts. Whereas rain gauges provide accurate measurement at a point, remote sensing helps to retrieve the spatial pattern. An algorithm, named Siprec, has been used to blend rain gauges, radar mosaic data, and satellite Eumetsat/MPE estimates by using Poisson’s equation over two basins in Brazil. The results indicated that Siprec decreased the root mean square error (RMSE) when compared to radar and satellite estimates as well as improved the correlation. Most of the errors were related to precipitation above 10  mm h−1, due to large spatial variability, typical of deep convection. The solution of Poisson’s equation acts directly on the data received at a certain time, converging the amplitude to the rain gauge values and keeping the spatial distribution of the radar or satellite measurement without a priori adjustments. This is an important advantage in an operational environment because it does not require frequent processing to update the weights like other schemes.
doi_str_mv 10.1061/(ASCE)HE.1943-5584.0001432
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1893915870</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1891851720</sourcerecordid><originalsourceid>FETCH-LOGICAL-a414t-558be30d304ffe963938c3b792e753b0cd952e0831c0be41d2fa11c65c365f1d3</originalsourceid><addsrcrecordid>eNqNkc9OAjEQxjdGE_HPOzSeMAFst7vL1hshq5Cgosi56Xa7pAgttF0NF-Nr-Ho-iV2XeDPxNDOd7zeZzhcEFwj2EEzQVXswG2aXo6yHSIS7cZxGPQghinB4ELR-3w59DtOoCxNCjoMTa5e1xhet4P2xYspJx5x8FWBqBJebn0orkFkn1006Vk4sDHOiAPkOTLW0Vquvj08Lsm3VSOZWqgV4YgUz4E5bJnkHzDyxWkknOoCpwjelAresWghwL9ybNi9nwVHJVlac7-NpML_Jnoej7uThdjwcTLosQpGrP5ELDAsMo7IUJMEEpxznfRKKfoxzyAsShwKmGHGYiwgVYckQ4knMcRKXqMCnQbuZuzF6Wwnr6Fpa7ndjSujKUpQSTFCc9uF_pCiNUT-spdeNlBttrREl3Rh_MbOjCNLaH0prf-goo7UXtPaC7v3xcNLAzE-nS10Z5S_wS_4NfgOGMZZN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1891851720</pqid></control><display><type>article</type><title>Quantitative Precipitation Estimation Integrated by Poisson’s Equation Using Radar Mosaic, Satellite, and Rain Gauge Network</title><source>American Society of Civil Engineers:NESLI2:Journals:2014</source><creator>Calvetti, Leonardo ; Beneti, Cesar ; Neundorf, Réverton Luís Antunes ; Inouye, Rafael Toshio ; Santos, Tiago Noronha dos ; Gomes, Ana Maria ; Herdies, Dirceu Luis ; de Gonçalves, Luis Gustavo Gonçalves</creator><creatorcontrib>Calvetti, Leonardo ; Beneti, Cesar ; Neundorf, Réverton Luís Antunes ; Inouye, Rafael Toshio ; Santos, Tiago Noronha dos ; Gomes, Ana Maria ; Herdies, Dirceu Luis ; de Gonçalves, Luis Gustavo Gonçalves</creatorcontrib><description>AbstractHigh-resolution quantitative precipitation estimation (QPE) from radar and satellite combined with rain gauges is one of the most important guides for hydrological forecasts. Whereas rain gauges provide accurate measurement at a point, remote sensing helps to retrieve the spatial pattern. An algorithm, named Siprec, has been used to blend rain gauges, radar mosaic data, and satellite Eumetsat/MPE estimates by using Poisson’s equation over two basins in Brazil. The results indicated that Siprec decreased the root mean square error (RMSE) when compared to radar and satellite estimates as well as improved the correlation. Most of the errors were related to precipitation above 10  mm h−1, due to large spatial variability, typical of deep convection. The solution of Poisson’s equation acts directly on the data received at a certain time, converging the amplitude to the rain gauge values and keeping the spatial distribution of the radar or satellite measurement without a priori adjustments. This is an important advantage in an operational environment because it does not require frequent processing to update the weights like other schemes.</description><identifier>ISSN: 1084-0699</identifier><identifier>EISSN: 1943-5584</identifier><identifier>DOI: 10.1061/(ASCE)HE.1943-5584.0001432</identifier><language>eng</language><publisher>American Society of Civil Engineers</publisher><subject>Case Studies ; Case Study ; Estimates ; Gages ; Gauges ; Hydrology ; Poisson equation ; Radar ; Rain ; Satellites</subject><ispartof>Journal of hydrologic engineering, 2017-05, Vol.22 (5)</ispartof><rights>2016 American Society of Civil Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a414t-558be30d304ffe963938c3b792e753b0cd952e0831c0be41d2fa11c65c365f1d3</citedby><cites>FETCH-LOGICAL-a414t-558be30d304ffe963938c3b792e753b0cd952e0831c0be41d2fa11c65c365f1d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)HE.1943-5584.0001432$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)HE.1943-5584.0001432$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,75935,75943</link.rule.ids></links><search><creatorcontrib>Calvetti, Leonardo</creatorcontrib><creatorcontrib>Beneti, Cesar</creatorcontrib><creatorcontrib>Neundorf, Réverton Luís Antunes</creatorcontrib><creatorcontrib>Inouye, Rafael Toshio</creatorcontrib><creatorcontrib>Santos, Tiago Noronha dos</creatorcontrib><creatorcontrib>Gomes, Ana Maria</creatorcontrib><creatorcontrib>Herdies, Dirceu Luis</creatorcontrib><creatorcontrib>de Gonçalves, Luis Gustavo Gonçalves</creatorcontrib><title>Quantitative Precipitation Estimation Integrated by Poisson’s Equation Using Radar Mosaic, Satellite, and Rain Gauge Network</title><title>Journal of hydrologic engineering</title><description>AbstractHigh-resolution quantitative precipitation estimation (QPE) from radar and satellite combined with rain gauges is one of the most important guides for hydrological forecasts. Whereas rain gauges provide accurate measurement at a point, remote sensing helps to retrieve the spatial pattern. An algorithm, named Siprec, has been used to blend rain gauges, radar mosaic data, and satellite Eumetsat/MPE estimates by using Poisson’s equation over two basins in Brazil. The results indicated that Siprec decreased the root mean square error (RMSE) when compared to radar and satellite estimates as well as improved the correlation. Most of the errors were related to precipitation above 10  mm h−1, due to large spatial variability, typical of deep convection. The solution of Poisson’s equation acts directly on the data received at a certain time, converging the amplitude to the rain gauge values and keeping the spatial distribution of the radar or satellite measurement without a priori adjustments. This is an important advantage in an operational environment because it does not require frequent processing to update the weights like other schemes.</description><subject>Case Studies</subject><subject>Case Study</subject><subject>Estimates</subject><subject>Gages</subject><subject>Gauges</subject><subject>Hydrology</subject><subject>Poisson equation</subject><subject>Radar</subject><subject>Rain</subject><subject>Satellites</subject><issn>1084-0699</issn><issn>1943-5584</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNkc9OAjEQxjdGE_HPOzSeMAFst7vL1hshq5Cgosi56Xa7pAgttF0NF-Nr-Ho-iV2XeDPxNDOd7zeZzhcEFwj2EEzQVXswG2aXo6yHSIS7cZxGPQghinB4ELR-3w59DtOoCxNCjoMTa5e1xhet4P2xYspJx5x8FWBqBJebn0orkFkn1006Vk4sDHOiAPkOTLW0Vquvj08Lsm3VSOZWqgV4YgUz4E5bJnkHzDyxWkknOoCpwjelAresWghwL9ybNi9nwVHJVlac7-NpML_Jnoej7uThdjwcTLosQpGrP5ELDAsMo7IUJMEEpxznfRKKfoxzyAsShwKmGHGYiwgVYckQ4knMcRKXqMCnQbuZuzF6Wwnr6Fpa7ndjSujKUpQSTFCc9uF_pCiNUT-spdeNlBttrREl3Rh_MbOjCNLaH0prf-goo7UXtPaC7v3xcNLAzE-nS10Z5S_wS_4NfgOGMZZN</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Calvetti, Leonardo</creator><creator>Beneti, Cesar</creator><creator>Neundorf, Réverton Luís Antunes</creator><creator>Inouye, Rafael Toshio</creator><creator>Santos, Tiago Noronha dos</creator><creator>Gomes, Ana Maria</creator><creator>Herdies, Dirceu Luis</creator><creator>de Gonçalves, Luis Gustavo Gonçalves</creator><general>American Society of Civil Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20170501</creationdate><title>Quantitative Precipitation Estimation Integrated by Poisson’s Equation Using Radar Mosaic, Satellite, and Rain Gauge Network</title><author>Calvetti, Leonardo ; Beneti, Cesar ; Neundorf, Réverton Luís Antunes ; Inouye, Rafael Toshio ; Santos, Tiago Noronha dos ; Gomes, Ana Maria ; Herdies, Dirceu Luis ; de Gonçalves, Luis Gustavo Gonçalves</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a414t-558be30d304ffe963938c3b792e753b0cd952e0831c0be41d2fa11c65c365f1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Case Studies</topic><topic>Case Study</topic><topic>Estimates</topic><topic>Gages</topic><topic>Gauges</topic><topic>Hydrology</topic><topic>Poisson equation</topic><topic>Radar</topic><topic>Rain</topic><topic>Satellites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Calvetti, Leonardo</creatorcontrib><creatorcontrib>Beneti, Cesar</creatorcontrib><creatorcontrib>Neundorf, Réverton Luís Antunes</creatorcontrib><creatorcontrib>Inouye, Rafael Toshio</creatorcontrib><creatorcontrib>Santos, Tiago Noronha dos</creatorcontrib><creatorcontrib>Gomes, Ana Maria</creatorcontrib><creatorcontrib>Herdies, Dirceu Luis</creatorcontrib><creatorcontrib>de Gonçalves, Luis Gustavo Gonçalves</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of hydrologic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Calvetti, Leonardo</au><au>Beneti, Cesar</au><au>Neundorf, Réverton Luís Antunes</au><au>Inouye, Rafael Toshio</au><au>Santos, Tiago Noronha dos</au><au>Gomes, Ana Maria</au><au>Herdies, Dirceu Luis</au><au>de Gonçalves, Luis Gustavo Gonçalves</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative Precipitation Estimation Integrated by Poisson’s Equation Using Radar Mosaic, Satellite, and Rain Gauge Network</atitle><jtitle>Journal of hydrologic engineering</jtitle><date>2017-05-01</date><risdate>2017</risdate><volume>22</volume><issue>5</issue><issn>1084-0699</issn><eissn>1943-5584</eissn><abstract>AbstractHigh-resolution quantitative precipitation estimation (QPE) from radar and satellite combined with rain gauges is one of the most important guides for hydrological forecasts. Whereas rain gauges provide accurate measurement at a point, remote sensing helps to retrieve the spatial pattern. An algorithm, named Siprec, has been used to blend rain gauges, radar mosaic data, and satellite Eumetsat/MPE estimates by using Poisson’s equation over two basins in Brazil. The results indicated that Siprec decreased the root mean square error (RMSE) when compared to radar and satellite estimates as well as improved the correlation. Most of the errors were related to precipitation above 10  mm h−1, due to large spatial variability, typical of deep convection. The solution of Poisson’s equation acts directly on the data received at a certain time, converging the amplitude to the rain gauge values and keeping the spatial distribution of the radar or satellite measurement without a priori adjustments. This is an important advantage in an operational environment because it does not require frequent processing to update the weights like other schemes.</abstract><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)HE.1943-5584.0001432</doi></addata></record>
fulltext fulltext
identifier ISSN: 1084-0699
ispartof Journal of hydrologic engineering, 2017-05, Vol.22 (5)
issn 1084-0699
1943-5584
language eng
recordid cdi_proquest_miscellaneous_1893915870
source American Society of Civil Engineers:NESLI2:Journals:2014
subjects Case Studies
Case Study
Estimates
Gages
Gauges
Hydrology
Poisson equation
Radar
Rain
Satellites
title Quantitative Precipitation Estimation Integrated by Poisson’s Equation Using Radar Mosaic, Satellite, and Rain Gauge Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T05%3A32%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20Precipitation%20Estimation%20Integrated%20by%20Poisson%E2%80%99s%20Equation%20Using%20Radar%20Mosaic,%20Satellite,%20and%20Rain%20Gauge%20Network&rft.jtitle=Journal%20of%20hydrologic%20engineering&rft.au=Calvetti,%20Leonardo&rft.date=2017-05-01&rft.volume=22&rft.issue=5&rft.issn=1084-0699&rft.eissn=1943-5584&rft_id=info:doi/10.1061/(ASCE)HE.1943-5584.0001432&rft_dat=%3Cproquest_cross%3E1891851720%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1891851720&rft_id=info:pmid/&rfr_iscdi=true